İkinci dereceden denklemlerin indirgenmesi. İkinci dereceden denklemleri kök formülleri kullanarak çözmek için algoritma. İkinci dereceden denklemler. kısaca ana şey hakkında

İlk seviye

İkinci dereceden denklemler. Kapsamlı rehber (2019)

"İkinci dereceden denklem" terimindeki anahtar kelime "ikinci dereceden"dir. Bu, denklemin zorunlu olarak bir değişkenin (aynı x) karesini içermesi gerektiği ve x'lerin üçüncü (veya daha büyük) kuvvetinin olmaması gerektiği anlamına gelir.

Birçok denklemin çözümü ikinci dereceden denklemlerin çözülmesine bağlıdır.

Bunun başka bir denklem değil, ikinci dereceden bir denklem olduğunu belirlemeyi öğrenelim.

Örnek 1.

Paydadan kurtulalım ve denklemin her terimini şununla çarpalım:

Her şeyi sol tarafa taşıyalım ve terimleri X'in kuvvetlerine göre azalan şekilde sıralayalım.

Artık bu denklemin ikinci dereceden olduğunu güvenle söyleyebiliriz!

Örnek 2.

Sol ve sağ tarafları şu şekilde çarpın:

Bu denklem, başlangıçta içinde olmasına rağmen ikinci dereceden değildir!

Örnek 3.

Her şeyi şununla çarpalım:

Korkutucu? Dördüncü ve ikinci dereceler... Ancak yerine koyarsak basit ikinci dereceden bir denklemimiz olduğunu görürüz:

Örnek 4.

Orada gibi görünüyor, ama daha yakından bakalım. Her şeyi sol tarafa taşıyalım:

Bakın, bu azaltılmış - ve artık basit bir doğrusal denklem!

Şimdi aşağıdaki denklemlerden hangilerinin ikinci dereceden olduğunu ve hangilerinin olmadığını kendiniz belirlemeye çalışın:

Örnekler:

Yanıtlar:

  1. kare;
  2. kare;
  3. kare değil;
  4. kare değil;
  5. kare değil;
  6. kare;
  7. kare değil;
  8. kare.

Matematikçiler geleneksel olarak tüm ikinci dereceden denklemleri aşağıdaki türlere ayırırlar:

  • İkinci dereceden denklemleri tamamla- katsayıların ve serbest terim c'nin sıfıra eşit olmadığı denklemler (örnekte olduğu gibi). Ek olarak, tam ikinci dereceden denklemler arasında verildi- bunlar katsayının olduğu denklemlerdir (birinci örnekteki denklem sadece tamamlanmış değil, aynı zamanda azaltılmış!)
  • Tamamlanmamış ikinci dereceden denklemler- katsayı ve/veya serbest terim c'nin sıfıra eşit olduğu denklemler:

    Eksikler çünkü bazı unsurlar eksik. Ancak denklem her zaman x kareyi içermelidir!!! Aksi takdirde, artık ikinci dereceden bir denklem değil, başka bir denklem olacaktır.

Neden böyle bir ayrım yaptılar? Görünüşe göre bir X kare var ve tamam. Bu bölüm çözüm yöntemlerine göre belirlenir. Her birine daha ayrıntılı olarak bakalım.

Tamamlanmamış ikinci dereceden denklemleri çözme

Öncelikle tamamlanmamış ikinci dereceden denklemleri çözmeye odaklanalım; bunlar çok daha basit!

Tamamlanmamış ikinci dereceden denklem türleri vardır:

  1. , bu denklemde katsayı eşittir.
  2. , bu denklemde serbest terim eşittir.
  3. , bu denklemde katsayı ve serbest terim eşittir.

1. i. Karekök almayı bildiğimize göre bu denklemden ifade edelim.

İfade negatif veya pozitif olabilir. Kareli bir sayı negatif olamaz, çünkü iki negatif veya iki pozitif sayı çarpıldığında sonuç her zaman pozitif bir sayı olacaktır, yani: eğer öyleyse, o zaman denklemin çözümü yoktur.

Ve eğer öyleyse, o zaman iki kök elde ederiz. Bu formülleri ezberlemenize gerek yok. Önemli olan, daha az olamayacağını bilmeniz ve her zaman hatırlamanızdır.

Bazı örnekleri çözmeye çalışalım.

Örnek 5:

Denklemi çözün

Artık geriye kalan tek şey kökü sol ve sağ taraftan çıkarmaktır. Sonuçta köklerin nasıl çıkarılacağını hatırlıyor musunuz?

Cevap:

Negatif işaretli kökleri asla unutmayın!!!

Örnek 6:

Denklemi çözün

Cevap:

Örnek 7:

Denklemi çözün

Ah! Bir sayının karesi negatif olamaz, yani denklem

kök yok!

Kökleri olmayan bu tür denklemler için matematikçiler özel bir simge (boş küme) geliştirdiler. Ve cevap şu şekilde yazılabilir:

Cevap:

Dolayısıyla bu ikinci dereceden denklemin iki kökü vardır. Kökünü çıkarmadığımız için burada herhangi bir kısıtlama yoktur.
Örnek 8:

Denklemi çözün

Parantezlerin ortak çarpanını çıkaralım:

Böylece,

Bu denklemin iki kökü vardır.

Cevap:

Tamamlanmamış ikinci dereceden denklemlerin en basit türü (her ne kadar hepsi basit olsa da, değil mi?). Açıkçası, bu denklemin her zaman tek bir kökü vardır:

Burada örneklere yer vermeyeceğiz.

Tam ikinci dereceden denklemleri çözme

Tam bir ikinci dereceden denklemin, form denkleminin bir denklemi olduğunu hatırlatırız;

İkinci dereceden denklemlerin tamamını çözmek bunlardan biraz daha zordur (sadece biraz).

Hatırlamak, Herhangi bir ikinci dereceden denklem bir diskriminant kullanılarak çözülebilir! Hatta eksik.

Diğer yöntemler bunu daha hızlı yapmanıza yardımcı olacaktır, ancak ikinci dereceden denklemlerle ilgili sorunlarınız varsa, önce diskriminant kullanarak çözümde ustalaşın.

1. İkinci dereceden denklemleri diskriminant kullanarak çözme.

Bu yöntemi kullanarak ikinci dereceden denklemleri çözmek çok basittir, asıl önemli olan eylem sırasını ve birkaç formülü hatırlamaktır.

Eğer öyleyse denklemin bir kökü vardır. Özel dikkat adım at. Diskriminant () bize denklemin kök sayısını söyler.

  • Eğer öyleyse, adımdaki formül şuna indirgenecektir. Böylece denklemin yalnızca bir kökü olacaktır.
  • Eğer öyleyse, bu adımda diskriminantın kökünü çıkaramayacağız. Bu da denklemin köklerinin olmadığını gösterir.

Denklemlerimize geri dönelim ve bazı örneklere bakalım.

Örnek 9:

Denklemi çözün

Aşama 1 atlıyoruz.

Adım 2.

Diskriminantı buluyoruz:

Bu, denklemin iki kökü olduğu anlamına gelir.

Aşama 3.

Cevap:

Örnek 10:

Denklemi çözün

Denklem standart biçimde sunulmuştur, bu nedenle Aşama 1 atlıyoruz.

Adım 2.

Diskriminantı buluyoruz:

Bu, denklemin tek kökü olduğu anlamına gelir.

Cevap:

Örnek 11:

Denklemi çözün

Denklem standart biçimde sunulmuştur, bu nedenle Aşama 1 atlıyoruz.

Adım 2.

Diskriminantı buluyoruz:

Bu, diskriminantın kökünü çıkaramayacağımız anlamına gelir. Denklemin kökleri yoktur.

Artık bu tür cevapları nasıl doğru bir şekilde yazacağımızı biliyoruz.

Cevap: kök yok

2. İkinci dereceden denklemlerin Vieta teoremini kullanarak çözülmesi.

Hatırlarsanız, indirgenmiş olarak adlandırılan bir denklem türü vardır (a katsayısı şuna eşit olduğunda):

Bu tür denklemleri Vieta teoremini kullanarak çözmek çok kolaydır:

Köklerin toplamı verildiİkinci dereceden denklem eşittir ve köklerin çarpımı eşittir.

Örnek 12:

Denklemi çözün

Bu denklem Vieta teoremi kullanılarak çözülebilir çünkü .

Denklemin köklerinin toplamı eşittir, yani. ilk denklemi elde ederiz:

Ve ürün şuna eşittir:

Sistemi oluşturup çözelim:

  • Ve. Tutar şuna eşittir;
  • Ve. Tutar şuna eşittir;
  • Ve. Miktar eşittir.

ve sistemin çözümü:

Cevap: ; .

Örnek 13:

Denklemi çözün

Cevap:

Örnek 14:

Denklemi çözün

Denklem verilmiştir, bunun anlamı şudur:

Cevap:

İKİNCİ DERECEDEN DENKLEMLER. ORTALAMA SEVİYE

İkinci dereceden denklem nedir?

Başka bir deyişle, ikinci dereceden bir denklem, bilinmeyenlerin, bazı sayıların ve olduğu formun bir denklemidir.

Sayıya en yüksek veya denir ilk katsayı ikinci dereceden denklem, - ikinci katsayı, A - Ücretsiz Üye.

Neden? Çünkü denklem hemen doğrusal hale gelirse, çünkü Kaybolacak.

Bu durumda ve sıfıra eşit olabilir. Bu sandalyede denkleme eksik denir. Eğer tüm terimler yerli yerindeyse denklem tamamlanmış demektir.

Çeşitli ikinci dereceden denklem türlerinin çözümleri

Tamamlanmamış ikinci dereceden denklemleri çözme yöntemleri:

Öncelikle, tamamlanmamış ikinci dereceden denklemleri çözme yöntemlerine bakalım - bunlar daha basittir.

Aşağıdaki denklem türlerini ayırt edebiliriz:

I., bu denklemde katsayı ve serbest terim eşittir.

II. , bu denklemde katsayı eşittir.

III. , bu denklemde serbest terim eşittir.

Şimdi bu alt türlerin her birinin çözümüne bakalım.

Açıkçası, bu denklemin her zaman tek bir kökü vardır:

Kareli bir sayı negatif olamaz çünkü iki negatif veya iki pozitif sayıyı çarptığınızda sonuç her zaman pozitif bir sayı olacaktır. Bu yüzden:

eğer öyleyse denklemin çözümü yoktur;

eğer iki kökümüz varsa

Bu formülleri ezberlemenize gerek yok. Hatırlanması gereken en önemli şey, daha az olamayacağıdır.

Örnekler:

Çözümler:

Cevap:

Negatif işaretli kökleri asla unutmayın!

Bir sayının karesi negatif olamaz, yani denklem

kök yok.

Bir problemin çözümü olmadığını kısaca yazmak için boş küme simgesini kullanırız.

Cevap:

Yani bu denklemin iki kökü var: ve.

Cevap:

Parantezlerin ortak çarpanını çıkaralım:

Faktörlerden en az birinin sıfıra eşit olması durumunda ürün sıfıra eşittir. Bu, aşağıdaki durumlarda denklemin bir çözümü olduğu anlamına gelir:

Yani bu ikinci dereceden denklemin iki kökü vardır: ve.

Örnek:

Denklemi çözün.

Çözüm:

Denklemin sol tarafını çarpanlarına ayıralım ve kökleri bulalım:

Cevap:

Tam ikinci dereceden denklemleri çözme yöntemleri:

1. Ayrımcı

İkinci dereceden denklemleri bu şekilde çözmek kolaydır, asıl önemli olan eylem sırasını ve birkaç formülü hatırlamaktır. Unutmayın, ikinci dereceden herhangi bir denklem diskriminant kullanılarak çözülebilir! Hatta eksik.

Kök formülündeki ayırıcının köküne dikkat ettiniz mi? Ancak diskriminant negatif olabilir. Ne yapalım? 2. adıma özellikle dikkat etmemiz gerekiyor. Diskriminant bize denklemin kök sayısını söyler.

  • Eğer öyleyse, denklemin kökleri vardır:
  • Eğer öyleyse, denklem aynı köklere ve aslında bir köke sahipse:

    Bu tür köklere çift kök denir.

  • Eğer öyleyse, diskriminantın kökü çıkarılmaz. Bu da denklemin köklerinin olmadığını gösterir.

Neden farklı sayıda kök mümkün? İkinci dereceden denklemin geometrik anlamına dönelim. Fonksiyonun grafiği bir paraboldür:

İkinci dereceden bir denklem olan özel bir durumda, . Bu, ikinci dereceden bir denklemin köklerinin apsis ekseni (eksen) ile kesişme noktaları olduğu anlamına gelir. Bir parabol ekseni hiç kesmeyebilir veya onu bir noktada (parabolün tepe noktası eksen üzerinde olduğunda) veya iki noktada kesebilir.

Ayrıca katsayı parabolün dallarının yönünden de sorumludur. Eğer öyleyse, parabolün dalları yukarıya, eğer ise aşağıya doğru yönlendirilir.

Örnekler:

Çözümler:

Cevap:

Cevap: .

Cevap:

Bu, hiçbir çözümün olmadığı anlamına gelir.

Cevap: .

2. Vieta teoremi

Vieta teoremini kullanmak çok kolaydır: sadece çarpımı denklemin serbest terimine eşit olan ve toplamı ters işaretle alınan ikinci katsayıya eşit olan bir çift sayı seçmeniz yeterlidir.

Vieta teoreminin yalnızca indirgenmiş ikinci dereceden denklemler ().

Birkaç örneğe bakalım:

Örnek 1:

Denklemi çözün.

Çözüm:

Bu denklem Vieta teoremi kullanılarak çözülebilir çünkü . Diğer katsayılar: ; .

Denklemin köklerinin toplamı:

Ve ürün şuna eşittir:

Çarpımları eşit olan sayı çiftlerini seçelim ve toplamlarının eşit olup olmadığını kontrol edelim:

  • Ve. Tutar şuna eşittir;
  • Ve. Tutar şuna eşittir;
  • Ve. Miktar eşittir.

ve sistemin çözümü:

Dolayısıyla ve denklemimizin kökleridir.

Cevap: ; .

Örnek #2:

Çözüm:

Çarpımı veren sayı çiftlerini seçelim ve sonra toplamlarının eşit olup olmadığını kontrol edelim:

ve: toplamda veriyorlar.

ve: toplamda veriyorlar. Elde etmek için, sözde köklerin ve sonuçta ürünün işaretlerini değiştirmek yeterlidir.

Cevap:

Örnek #3:

Çözüm:

Denklemin serbest terimi negatif olduğundan köklerin çarpımı negatif bir sayıdır. Bu ancak köklerden birinin negatif, diğerinin pozitif olması durumunda mümkündür. Bu nedenle köklerin toplamı eşittir modüllerinin farklılıkları.

Çarpımı veren ve farkı eşit olan sayı çiftlerini seçelim:

ve: farkları eşit - uymuyor;

ve: - uygun değil;

ve: - uygun değil;

ve: - uygun. Geriye kalan tek şey köklerden birinin negatif olduğunu hatırlamak. Toplamlarının eşit olması gerektiğinden, modülü daha küçük olan kök negatif olmalıdır: . Kontrol ediyoruz:

Cevap:

Örnek #4:

Denklemi çözün.

Çözüm:

Denklem verilmiştir, bunun anlamı şudur:

Serbest terim negatif olduğundan köklerin çarpımı negatiftir. Bu da ancak denklemin bir kökünün negatif, diğerinin pozitif olması durumunda mümkündür.

Çarpımları eşit olan sayı çiftlerini seçelim ve ardından hangi köklerin negatif işarete sahip olması gerektiğini belirleyelim:

Açıkçası, yalnızca kökler ve ilk koşul için uygundur:

Cevap:

Örnek #5:

Denklemi çözün.

Çözüm:

Denklem verilmiştir, bunun anlamı şudur:

Köklerin toplamı negatiftir, yani köklerden en az biri negatiftir. Ancak çarpımları pozitif olduğundan her iki kökün de eksi işareti olduğu anlamına gelir.

Çarpımı şuna eşit olan sayı çiftlerini seçelim:

Açıkçası, kökler sayılardır ve.

Cevap:

Katılıyorum, bu kötü ayrımcıyı saymak yerine sözlü olarak kökleri bulmak çok uygun. Vieta teoremini mümkün olduğunca sık kullanmaya çalışın.

Ancak kökleri bulmayı kolaylaştırmak ve hızlandırmak için Vieta teoremine ihtiyaç vardır. Kullanımından faydalanabilmeniz için eylemleri otomatikleştirmeniz gerekmektedir. Bunun için beş örnek daha çözün. Ama hile yapmayın: diskriminant kullanamazsınız! Yalnızca Vieta teoremi:

Bağımsız çalışma için görev çözümleri:

Görev 1. ((x)^(2))-8x+12=0

Vieta teoremine göre:

Her zamanki gibi seçime şu parçayla başlıyoruz:

Uygun değil çünkü miktar;

: miktar tam ihtiyacınız olan şeydir.

Cevap: ; .

Görev 2.

Ve yine en sevdiğimiz Vieta teoremi: toplam eşit olmalı ve çarpım da eşit olmalıdır.

Ama olmaması gerektiği için, köklerin işaretlerini değiştiriyoruz: ve (toplamda).

Cevap: ; .

Görev 3.

Hımm... Nerede o?

Tüm terimleri tek bir bölüme taşımanız gerekir:

Köklerin toplamı çarpıma eşittir.

Tamam, dur! Denklem verilmemiştir. Ancak Vieta teoremi yalnızca verilen denklemlere uygulanabilir. Bu yüzden önce bir denklem vermeniz gerekiyor. Eğer liderlik edemiyorsanız, bu fikirden vazgeçin ve sorunu başka bir yolla (örneğin, ayrımcıyla) çözün. İkinci dereceden bir denklem vermenin baş katsayıyı eşitlemek anlamına geldiğini hatırlatmama izin verin:

Harika. O zaman köklerin toplamı eşittir ve çarpım.

Burada armut bombardımanı yapmak kadar kolay: sonuçta bu bir asal sayı (totoloji için özür dilerim).

Cevap: ; .

Görev 4.

Ücretsiz üye negatiftir. Bunun nesi özel? Ve gerçek şu ki, köklerin farklı işaretleri olacak. Ve şimdi seçim sırasında köklerin toplamını değil, modüllerindeki farkı kontrol ediyoruz: bu fark eşittir, ancak bir üründür.

Yani kökler ve'ye eşittir, ancak bunlardan biri eksidir. Vieta teoremi bize köklerin toplamının zıt işaretli ikinci katsayıya eşit olduğunu söyler. Bu, daha küçük kökün bir eksiye sahip olacağı anlamına gelir: ve, çünkü.

Cevap: ; .

Görev 5.

İlk önce ne yapmalısın? Bu doğru, denklemi verin:

Tekrar: Sayının faktörlerini seçiyoruz ve aralarındaki fark şuna eşit olmalıdır:

Kökler ve'ye eşittir, ancak bunlardan biri eksidir. Hangi? Toplamları eşit olmalıdır, yani eksi daha büyük bir köke sahip olacaktır.

Cevap: ; .

Özetleyeyim:
  1. Vieta teoremi yalnızca verilen ikinci dereceden denklemlerde kullanılır.
  2. Vieta teoremini kullanarak kökleri seçim yoluyla sözlü olarak bulabilirsiniz.
  3. Denklem verilmezse veya serbest terimin uygun bir faktör çifti bulunmazsa, o zaman tam kök yoktur ve bunu başka bir şekilde (örneğin, bir diskriminant aracılığıyla) çözmeniz gerekir.

3. Tam kareyi seçme yöntemi

Bilinmeyeni içeren tüm terimler kısaltılmış çarpma formüllerinden (toplamın veya farkın karesi) terimler biçiminde temsil edilirse, değişkenleri değiştirdikten sonra denklem, türün tamamlanmamış ikinci dereceden denklemi biçiminde sunulabilir.

Örneğin:

Örnek 1:

Denklemi çözün: .

Çözüm:

Cevap:

Örnek 2:

Denklemi çözün: .

Çözüm:

Cevap:

İÇİNDE Genel görünüm dönüşüm şöyle görünecek:

Bu şu anlama gelir: .

Sana hiçbir şey hatırlatmıyor mu? Bu ayrımcılıktır! Diskriminant formülünü tam olarak bu şekilde elde ettik.

İKİNCİ DERECEDEN DENKLEMLER. ANA ŞEYLER HAKKINDA KISACA

İkinci dereceden denklem- bu, - bilinmeyenin, - ikinci dereceden denklemin katsayılarının, - serbest terimin olduğu formun bir denklemidir.

Tam ikinci dereceden denklem- katsayıların sıfıra eşit olmadığı bir denklem.

Azaltılmış ikinci dereceden denklem- katsayının olduğu bir denklem: .

Tamamlanmamış ikinci dereceden denklem- katsayı ve/veya serbest terim c'nin sıfıra eşit olduğu bir denklem:

  • katsayı ise denklem şuna benzer: ,
  • serbest bir terim varsa denklem şu şekildedir: ,
  • eğer ve ise denklem şuna benzer: .

1. Tamamlanmamış ikinci dereceden denklemleri çözmek için algoritma

1.1. Formun tamamlanmamış ikinci dereceden denklemi, burada:

1) Bilinmeyeni ifade edelim: ,

2) İfadenin işaretini kontrol edin:

  • eğer öyleyse denklemin çözümü yok,
  • eğer öyleyse denklemin iki kökü vardır.

1.2. Formun tamamlanmamış ikinci dereceden denklemi, burada:

1) Parantez içindeki ortak çarpanı çıkaralım: ,

2) Faktörlerden en az birinin sıfıra eşit olması durumunda çarpım sıfıra eşittir. Bu nedenle denklemin iki kökü vardır:

1.3. Formun tamamlanmamış ikinci dereceden denklemi, burada:

Bu denklemin her zaman tek bir kökü vardır: .

2. Formun ikinci dereceden tam denklemlerini çözmek için algoritma

2.1. Diskriminant kullanarak çözüm

1) Denklemi standart forma getirelim: ,

2) Denklemin kök sayısını gösteren formülü kullanarak diskriminantı hesaplayalım:

3) Denklemin köklerini bulun:

  • eğer öyleyse, denklemin aşağıdaki formülle bulunan kökleri vardır:
  • eğer öyleyse, denklemin aşağıdaki formülle bulunan bir kökü vardır:
  • eğer öyleyse denklemin kökleri yoktur.

2.2. Vieta teoremini kullanarak çözüm

İndirgenmiş ikinci dereceden denklemin köklerinin toplamı (formun denklemi) eşittir ve köklerin çarpımı eşittir, yani. , A.

2.3. Tam kare seçme yöntemiyle çözüm

Formun ikinci dereceden bir denkleminin kökleri varsa, şu şekilde yazılabilir: .

Neyse konu bitti. Eğer bu satırları okuyorsanız çok havalısınız demektir.

Çünkü insanların yalnızca %5'i bir konuda kendi başına ustalaşabiliyor. Ve eğer sonuna kadar okursanız, o zaman siz de bu %5'in içindesiniz!

Şimdi en önemli şey.

Bu konudaki teoriyi anladınız. Ve tekrar ediyorum, bu... bu gerçekten süper! Sen zaten ondan daha iyisin salt çoğunluk Meslektaşlarınızın.

Sorun şu ki bu yeterli olmayabilir...

Ne için?

İçin başarılı tamamlama Birleşik Devlet Sınavı, üniversiteye kısıtlı bir bütçeyle ve EN ÖNEMLİSİ de ömür boyu kabul için.

Seni hiçbir şeye ikna etmeyeceğim, sadece tek bir şey söyleyeceğim...

Alınan insanlar iyi bir eğitim, almayanlardan çok daha fazlasını kazanın. Bu istatistik.

Ancak asıl mesele bu değil.

Önemli olan DAHA MUTLU olmalarıdır (böyle çalışmalar var). Belki de önlerine çok daha fazla fırsat çıktığı ve hayat daha parlak hale geldiği için? Bilmiyorum...

Ama kendin düşün...

Birleşik Devlet Sınavında diğerlerinden daha iyi olmak ve sonuçta... daha mutlu olmak için ne gerekir?

BU KONUDAKİ SORUNLARI ÇÖZEREK ELİNİZİ KAZANIN.

Sınav sırasında sizden teori sorulmayacak.

İhtiyacın olacak zamana karşı sorunları çözmek.

Ve eğer bunları çözmediyseniz (ÇOK!), kesinlikle bir yerlerde aptalca bir hata yapacaksınız veya zamanınız olmayacak.

Sporda olduğu gibi - kesin olarak kazanmak için bunu defalarca tekrarlamanız gerekir.

Koleksiyonu dilediğiniz yerde bulun, mutlaka çözümlerle, detaylı analizlerle ve karar ver, karar ver, karar ver!

Görevlerimizi kullanabilirsiniz (isteğe bağlı) ve elbette bunları öneririz.

Görevlerimizi daha iyi kullanmak için şu anda okuduğunuz YouClever ders kitabının ömrünün uzatılmasına yardımcı olmanız gerekir.

Nasıl? İki seçenek var:

  1. Bu makaledeki tüm gizli görevlerin kilidini açın - 299 ovmak.
  2. Ders kitabının 99 makalesinin tamamındaki tüm gizli görevlere erişimin kilidini açın - 499 ovmak.

Evet, ders kitabımızda buna benzer 99 makale var ve tüm görevlere ve bunların içindeki tüm gizli metinlere erişim anında açılabilir.

Sitenin TÜM ömrü boyunca tüm gizli görevlere erişim sağlanır.

Sonuç olarak...

Görevlerimizi beğenmiyorsanız başkalarını bulun. Sadece teoride durmayın.

“Anlamak” ve “çözebilirim” tamamen farklı becerilerdir. İkisine de ihtiyacın var.

Sorunları bulun ve çözün!

İkinci dereceden bir denklem şuna benzeyen bir denklemdir: balta 2 + dx + c = 0. Anlamı var AC Ve İle herhangi bir sayı ve A sıfıra eşit değil.

Tüm ikinci dereceden denklemler çeşitli türlere ayrılır:

Tek köklü denklemler.
-İki farklı köke sahip denklemler.
-Hiç kökü olmayan denklemler.

Farklılaşan şey bu doğrusal denklemler burada kök her zaman aynı, kareden itibaren. İfadede kaç kök olduğunu anlamak için ihtiyacınız var İkinci dereceden bir denklemin diskriminantı.

Denklemimizin ax 2 + dx + c =0 olduğunu varsayalım. Araç ikinci dereceden bir denklemin diskriminantı -

D = b 2 - 4 ac

Ve bu sonsuza kadar hatırlanmalıdır. Bu denklemi kullanarak ikinci dereceden denklemdeki kök sayısını belirleriz. Ve bunu şu şekilde yapıyoruz:

D sıfırdan küçük olduğunda denklemin kökleri yoktur.
- D sıfır olduğunda yalnızca bir kök vardır.
- D sıfırdan büyük olduğunda denklemin iki kökü vardır.
Diskriminantın, işaretleri değiştirmeden denklemde kaç kök olduğunu gösterdiğini unutmayın.

Netlik sağlamak için şunu düşünelim:

Bu ikinci dereceden denklemde kaç kök olduğunu bulmamız gerekiyor.

1) x 2 - 8x + 12 = 0
2)5x2 + 3x + 7 = 0
3) x 2 -6x + 9 = 0

Değerleri ilk denkleme giriyoruz ve diskriminantı buluyoruz.
a = 1, b = -8, c = 12
D = (-8) 2 - 4 * 1 * 12 = 64 - 48 = 16
Diskriminantın artı işareti vardır, bu da eşitliğin iki kökü olduğu anlamına gelir.

Aynısını ikinci denklem için de yapıyoruz.
a = 1, b = 3, c = 7
D = 3 2 - 4 * 5 * 7 = 9 - 140 = - 131
Değer negatiftir, yani bu eşitliğin kökleri yoktur.

Aşağıdaki denklemi benzetme yoluyla genişletelim.
a = 1, b = -6, c = 9
D = (-6) 2 - 4 * 1 * 9 = 36 - 36 = 0
sonuç olarak denklemde bir kökümüz var.

Her denklemde katsayıları yazmamız önemlidir. Elbette bu çok uzun bir süreç değil ama kafamızın karışmamasını sağladı ve hataların oluşmasını engelledi. Benzer denklemleri çok sık çözerseniz hesaplamaları zihinsel olarak yapabilecek ve denklemin kaç kökü olduğunu önceden bilebileceksiniz.

Başka bir örneğe bakalım:

1) x 2 - 2x - 3 = 0
2) 15 - 2x - x 2 = 0
3) x 2 + 12x + 36 = 0

İlkini sıralayalım
a = 1, b = -2, c = -3
D =(-2) 2 - 4 * 1 * (-3) = 16 sıfırdan büyük yani iki kökü var bunları türetelim
x 1 = 2+?16/2 * 1 = 3, x 2 = 2-?16/2 * 1 = -1.

İkinciyi düzenliyoruz
a = -1, b = -2, c = 15
D = (-2) 2 - 4 * 4 * (-1) * 15 = 64, sıfırdan büyüktür ve ayrıca iki kökü vardır. Bunları gösterelim:
x 1 = 2+?64/2 * (-1) = -5, x 2 = 2-?64/2 *(-1) = 3.

Üçüncüyü ortaya koyuyoruz
a = 1, b = 12, c = 36
D = 12 2 - 4 * 1 * 36 =0, sıfıra eşittir ve tek kökü vardır
x = -12 + ?0/2 * 1 = -6.
Bu denklemleri çözmek zor değil.

Bize eksik ikinci dereceden bir denklem verilirse. Örneğin

1x2 + 9x = 0
2x2 - 16 = 0

Bu denklemler yukarıdakilerden farklıdır çünkü tam değildir, içinde üçüncü bir değer yoktur. Ancak buna rağmen tam bir ikinci dereceden denklemden daha basittir ve içinde bir diskriminant aramaya gerek yoktur.

Acilen ihtiyacınız olduğunda ne yapmalısınız? mezuniyet çalışması veya bir makale, ancak yazmaya zamanınız mı yok? Tüm bunları ve çok daha fazlasını Deeplom.by web sitesinden (http://deeplom.by/) sipariş edebilir ve en yüksek puanı alabilirsiniz.

İkinci dereceden bir denklemin kökleri için formüller. Gerçek, çoklu ve karmaşık kök durumları dikkate alınır. İkinci dereceden bir trinomialın çarpanlara ayrılması. Geometrik yorumlama. Kök belirleme ve çarpanlara ayırma örnekleri.

Temel formüller

İkinci dereceden denklemi düşünün:
(1) .
İkinci dereceden bir denklemin kökleri(1) aşağıdaki formüllerle belirlenir:
; .
Bu formüller şu şekilde birleştirilebilir:
.
İkinci dereceden bir denklemin kökleri bilindiğinde, ikinci dereceden bir polinom, faktörlerin (çarpanlarına alınmış) bir ürünü olarak temsil edilebilir:
.

Ayrıca şunu varsayıyoruz: gerçek sayılar.
Hadi düşünelim ikinci dereceden bir denklemin diskriminantı:
.
Diskriminant pozitifse, ikinci dereceden denklemin (1) iki farklı gerçek kökü vardır:
; .
O zaman ikinci dereceden üç terimlinin çarpanlara ayrılması şu şekildedir:
.
Diskriminant sıfıra eşitse, ikinci dereceden denklemin (1) iki çoklu (eşit) gerçek kökü vardır:
.
Faktorizasyon:
.
Diskriminant negatifse, ikinci dereceden denklemin (1) iki karmaşık eşlenik kökü vardır:
;
.
İşte sanal birim;
ve köklerin gerçek ve sanal kısımları:
; .
Daha sonra

.

Grafik yorumlama

Eğer inşa edersen bir fonksiyonun grafiği
,
bu bir parabol ise, grafiğin eksenle kesişme noktaları denklemin kökleri olacaktır.
.
noktasında grafik x eksenini (ekseni) iki noktada keser.
Grafik x eksenine bir noktada dokunduğunda.
Grafik x eksenini kesmediğinde.

Aşağıda bu tür grafiklerin örnekleri verilmiştir.

İkinci dereceden denklemle ilgili faydalı formüller

(f.1) ;
(f.2) ;
(f.3) .

İkinci dereceden bir denklemin kökleri için formülün türetilmesi

Dönüşümler gerçekleştiriyoruz ve (f.1) ve (f.3) formüllerini uyguluyoruz:




,
Nerede
; .

Böylece ikinci dereceden bir polinomun formülünü şu şekilde elde ettik:
.
Bu, denklemin

gerçekleştirilen
Ve .
Yani ve ikinci dereceden denklemin kökleridir
.

İkinci dereceden bir denklemin köklerini belirleme örnekleri

örnek 1


(1.1) .

Çözüm


.
Denklemimiz (1.1) ile karşılaştırıldığında katsayıların değerlerini buluyoruz:
.
Diskriminantı buluyoruz:
.
Diskriminant pozitif olduğundan denklemin iki gerçek kökü vardır:
;
;
.

Buradan ikinci dereceden üç terimlinin çarpanlara ayrılmasını elde ederiz:

.

y = fonksiyonunun grafiği 2 x 2 + 7 x + 3 x eksenini iki noktada keser.

Fonksiyonun grafiğini çizelim
.
Bu fonksiyonun grafiği bir paraboldür. Apsis eksenini (ekseni) iki noktada keser:
Ve .
Bu noktalar orijinal denklemin (1.1) kökleridir.

Cevap

;
;
.

Örnek 2

İkinci dereceden bir denklemin köklerini bulun:
(2.1) .

Çözüm

İkinci dereceden denklemi genel biçimde yazalım:
.
Orijinal denklem (2.1) ile karşılaştırıldığında katsayıların değerlerini buluyoruz:
.
Diskriminantı buluyoruz:
.
Diskriminant sıfır olduğundan denklemin iki çoklu (eşit) kökü vardır:
;
.

O halde trinomiyalin çarpanlara ayrılması şu şekildedir:
.

y = x fonksiyonunun grafiği 2 - 4 x + 4 x eksenine bir noktada dokunuyor.

Fonksiyonun grafiğini çizelim
.
Bu fonksiyonun grafiği bir paraboldür. X eksenine (ekseni) bir noktada dokunuyor:
.
Bu nokta orijinal denklemin (2.1) köküdür. Çünkü bu kök iki kez çarpanlara ayrılır:
,
o zaman böyle bir köke genellikle kat denir. Yani iki eşit kök olduğuna inanıyorlar:
.

Cevap

;
.

Örnek 3

İkinci dereceden bir denklemin köklerini bulun:
(3.1) .

Çözüm

İkinci dereceden denklemi genel biçimde yazalım:
(1) .
Orijinal denklemi (3.1) yeniden yazalım:
.
(1) ile karşılaştırarak katsayıların değerlerini buluyoruz:
.
Diskriminantı buluyoruz:
.
Diskriminant negatiftir. Bu nedenle gerçek kökler yoktur.

Karmaşık kökleri bulabilirsiniz:
;
;
.

Daha sonra


.

Fonksiyonun grafiği x eksenini kesmez. Gerçek kökler yoktur.

Fonksiyonun grafiğini çizelim
.
Bu fonksiyonun grafiği bir paraboldür. X eksenini (ekseni) kesmez. Bu nedenle gerçek kökler yoktur.

Cevap

Gerçek kökler yoktur. Karmaşık kökler:
;
;
.

İkinci dereceden denklem problemleri de incelenmektedir. Okul müfredatı ve üniversitelerde. a*x^2 + b*x + c = 0 formundaki denklemleri kastediyorlar; X- değişken, a, b, c – sabitler; A<>0. Görev denklemin köklerini bulmaktır.

İkinci dereceden denklemin geometrik anlamı

İkinci dereceden bir denklemle temsil edilen bir fonksiyonun grafiği bir paraboldür. İkinci dereceden bir denklemin çözümleri (kökleri), parabolün apsis (x) ekseni ile kesişme noktalarıdır. Buradan üç olası durumun olduğu anlaşılmaktadır:
1) parabolün apsis ekseni ile kesişme noktası yoktur. Bu, dalları yukarı bakacak şekilde üst düzlemde veya dalları aşağı bakacak şekilde altta olduğu anlamına gelir. Bu gibi durumlarda, ikinci dereceden denklemin gerçek kökleri yoktur (iki karmaşık kökü vardır).

2) parabolün Ox ekseni ile bir kesişme noktası vardır. Böyle bir noktaya parabolün tepe noktası denir ve buradaki ikinci dereceden denklem minimum veya maksimum değerini alır. Bu durumda, ikinci dereceden denklemin bir gerçek kökü (veya iki özdeş kökü) vardır.

3) Son durum pratikte daha ilginçtir - parabolün apsis ekseni ile kesiştiği iki nokta vardır. Bu, denklemin iki gerçek kökü olduğu anlamına gelir.

Değişkenlerin kuvvetlerinin katsayılarının analizine dayanarak parabolün yerleşimi hakkında ilginç sonuçlar çıkarılabilir.

1) a katsayısı sıfırdan büyükse parabolün dalları yukarı doğru, negatifse parabolün dalları aşağı doğru yönlendirilir.

2) B katsayısı sıfırdan büyükse, parabolün tepe noktası sol yarı düzlemde bulunur, negatif bir değer alırsa sağdadır.

İkinci dereceden bir denklemi çözmek için formülün türetilmesi

Sabiti ikinci dereceden denklemden aktaralım

eşittir işareti için ifadeyi elde ederiz

Her iki tarafı da 4a ile çarpın

Solda tam bir kare elde etmek için her iki tarafa da b^2 ekleyin ve dönüşümü gerçekleştirin

Buradan buluyoruz

İkinci dereceden bir denklemin diskriminant formülü ve kökleri

Diskriminant radikal ifadenin değeridir.Pozitif ise denklemin formülle hesaplanan iki gerçek kökü vardır. Diskriminant sıfır olduğunda, ikinci dereceden denklemin bir çözümü vardır (iki çakışan kök), bu da yukarıdaki D=0 formülünden kolayca elde edilebilir. Diskriminant negatif olduğunda, denklemin gerçek kökleri yoktur. Ancak ikinci dereceden denklemin çözümleri karmaşık düzlemde bulunur ve değerleri aşağıdaki formül kullanılarak hesaplanır.

Vieta'nın teoremi

İkinci dereceden bir denklemin iki kökünü ele alalım ve bunlara dayanarak ikinci dereceden bir denklem oluşturalım.Vieta teoreminin kendisi gösterimden kolayca çıkar: eğer elimizde ikinci dereceden bir denklem varsa o zaman köklerinin toplamı ters işaretle alınan p katsayısına eşittir ve denklemin köklerinin çarpımı serbest terim q'ya eşittir. Yukarıdakilerin formülsel gösterimi şuna benzeyecektir: Klasik bir denklemde a sabiti sıfırdan farklıysa, o zaman denklemin tamamını buna bölmeniz ve ardından Vieta teoremini uygulamanız gerekir.

İkinci dereceden denklem programını çarpanlara ayırma

Görev belirlensin: İkinci dereceden bir denklemi çarpanlarına ayırın. Bunu yapmak için önce denklemi çözeriz (kökleri buluruz). Daha sonra, bulunan kökleri ikinci dereceden denklemin açılım formülüne koyarız, bu sorunu çözecektir.

İkinci dereceden denklem problemleri

Görev 1. İkinci dereceden bir denklemin köklerini bulun

x^2-26x+120=0 .

Çözüm: Katsayıları yazın ve bunları diskriminant formülünde değiştirin.

İn kökü verilen değer 14'e eşittir, hesap makinesiyle bulmak kolaydır veya sık kullanımla hatırlanır, ancak kolaylık sağlamak için makalenin sonunda bu tür problemlerde sıklıkla karşılaşılabilecek sayıların karelerinin bir listesini size vereceğim.
Bulunan değeri kök formülde değiştiririz

ve alıyoruz

Görev 2. Denklemi çözün

2x2 +x-3=0.

Çözüm: İkinci dereceden tam bir denklemimiz var, katsayıları yazıyoruz ve diskriminantı buluyoruz


Bilinen formülleri kullanarak ikinci dereceden denklemin köklerini buluyoruz

Görev 3. Denklemi çözün

9x2 -12x+4=0.

Çözüm: İkinci dereceden tam bir denklemimiz var. Diskriminantın belirlenmesi

Köklerin çakıştığı bir durumla karşı karşıyayız. Formülü kullanarak köklerin değerlerini bulun

Görev 4. Denklemi çözün

x^2+x-6=0 .

Çözüm: X'in katsayılarının küçük olduğu durumlarda Vieta teoreminin uygulanması tavsiye edilir. Durumuna göre iki denklem elde ederiz

İkinci koşuldan çarpımın -6'ya eşit olması gerektiğini buluyoruz. Bu, köklerden birinin negatif olduğu anlamına gelir. Aşağıdaki olası çözüm çiftine sahibiz (-3;2), (3;-2) . İlk koşulu dikkate alarak ikinci çözüm çiftini reddediyoruz.
Denklemin kökleri eşittir

Problem 5. Çevresi 18 cm ve alanı 77 cm2 olan bir dikdörtgenin kenar uzunluklarını bulun.

Çözüm: Dikdörtgenin çevresinin yarısı komşu kenarlarının toplamına eşittir. Büyük kenar olarak x'i gösterelim, o zaman 18-x küçük kenar olsun. Dikdörtgenin alanı bu uzunlukların çarpımına eşittir:
x(18-x)=77;
veya
x 2 -18x+77=0.
Denklemin diskriminantını bulalım

Denklemin köklerinin hesaplanması

Eğer x=11, O 18'ler=7 , bunun tersi de doğrudur (eğer x=7 ise 21's=9).

Problem 6. İkinci dereceden denklemi 10x 2 -11x+3=0 çarpanlarına ayırın.

Çözüm: Denklemin köklerini hesaplayalım, bunun için diskriminantı bulacağız.

Bulunan değeri kök formülde yerine koyarız ve hesaplarız

İkinci dereceden bir denklemi köklere göre ayrıştırmak için formülü uyguluyoruz

Parantezleri açarak bir kimlik elde ederiz.

Parametreli ikinci dereceden denklem

Örnek 1. Hangi parametre değerlerinde A ,(a-3)x 2 + (3-a)x-1/4=0 denkleminin tek kökü var mı?

Çözüm: a=3 değerini doğrudan yerine koyarsak çözümü olmadığını görürüz. Daha sonra, sıfır diskriminantlı denklemin çokluk 2'nin bir köküne sahip olduğu gerçeğini kullanacağız. Diskriminantını yazalım

Sadeleştirip sıfıra eşitleyelim

a parametresine göre çözümü Vieta teoremi kullanılarak kolaylıkla elde edilebilen ikinci dereceden bir denklem elde ettik. Köklerin toplamı 7, çarpımı 12'dir. Basit bir aramayla 3,4 sayılarının denklemin kökleri olacağını tespit ederiz. Hesaplamaların başında a=3 çözümünü zaten reddettiğimiz için tek doğru çözüm şu olacaktır: a=4. Dolayısıyla a=4 için denklemin bir kökü vardır.

Örnek 2. Hangi parametre değerlerinde A , denklem a(a+3)x^2+(2a+6)x-3a-9=0 birden fazla kökü var mı?

Çözüm: Öncelikle tekil noktaları ele alalım, bunlar a=0 ve a=-3 değerleri olacaktır. a=0 olduğunda denklem 6x-9=0 şeklinde basitleştirilecektir; x=3/2 ve bir kök olacak. a= -3 için 0=0 kimliğini elde ederiz.
Diskriminantı hesaplayalım

ve a'nın pozitif olduğu değerini bulun

İlk koşuldan a>3 elde ederiz. İkinci olarak denklemin diskriminantını ve köklerini buluyoruz.


Fonksiyonun aldığı aralıkları tanımlayalım pozitif değerler. a=0 noktasını değiştirerek şunu elde ederiz: 3>0 . Yani (-3;1/3) aralığının dışında fonksiyon negatiftir. Asıl noktayı unutma a=0, orijinal denklemin içinde bir kökü olduğundan bu hariç tutulmalıdır.
Sonuç olarak problemin koşullarını sağlayan iki aralık elde ederiz.

Pratikte pek çok benzer görev olacak, görevleri kendiniz çözmeye çalışın ve birbirini dışlayan koşulları hesaba katmayı unutmayın. İkinci dereceden denklemleri çözmek için formülleri iyi inceleyin; bunlara genellikle çeşitli problemler ve bilimlerdeki hesaplamalarda ihtiyaç duyulur.

Umarım bu makaleyi inceledikten sonra ikinci dereceden tam bir denklemin köklerini nasıl bulacağınızı öğreneceksiniz.

Diskriminant kullanılarak yalnızca tam ikinci dereceden denklemler çözülür; tamamlanmamış ikinci dereceden denklemleri çözmek için, "Eksik ikinci dereceden denklemleri çözme" makalesinde bulacağınız diğer yöntemler kullanılır.

Hangi ikinci dereceden denklemlere tam denir? Bu ax 2 + b x + c = 0 formundaki denklemler a, b ve c katsayılarının sıfıra eşit olmadığı durumda. Dolayısıyla ikinci dereceden bir denklemi tam olarak çözmek için diskriminant D'yi hesaplamamız gerekir.

D = b 2 – 4ac.

Diskriminantın değerine bağlı olarak cevabı yazacağız.

Diskriminant negatif bir sayı ise (D< 0),то корней нет.

Diskriminant sıfır ise x = (-b)/2a olur. Diskriminant pozitif bir sayı olduğunda (D > 0),

bu durumda x 1 = (-b - √D)/2a ve x 2 = (-b + √D)/2a olur.

Örneğin. Denklemi çözün x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Cevap: 2.

Denklem 2'yi Çöz x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Cevap: Kök yok.

Denklem 2'yi Çöz x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3,5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Cevap: – 3.5; 1.

Şimdi Şekil 1'deki diyagramı kullanarak tam ikinci dereceden denklemlerin çözümünü hayal edelim.

Bu formülleri kullanarak herhangi bir tam ikinci dereceden denklemi çözebilirsiniz. Sadece dikkatli olman gerekiyor denklem bir polinom olarak yazılmıştır standart görünüm

A x 2 + bx + c, aksi halde hata yapabilirsiniz. Örneğin, x + 3 + 2x 2 = 0 denklemini yazarken yanlışlıkla şuna karar verebilirsiniz:

a = 1, b = 3 ve c = 2. O halde

D = 3 2 – 4 1 2 = 1 ve bu durumda denklemin iki kökü vardır. Ve bu doğru değil. (Yukarıdaki örnek 2'nin çözümüne bakın).

Bu nedenle, eğer denklem standart formda bir polinom olarak yazılmamışsa, öncelikle ikinci dereceden denklemin tamamı standart formda bir polinom olarak yazılmalıdır (en büyük üssü olan monom ilk önce gelmelidir, yani A x 2 , daha azıyla bx ve sonra ücretsiz bir üye İle.

İkinci dereceden ikinci dereceden denklemi ve çift katsayılı ikinci dereceden denklemi çözerken, diğer formülleri kullanabilirsiniz. Gelin bu formülleri tanıyalım. Tam ikinci dereceden bir denklemde ikinci terimin çift katsayısı varsa (b = 2k), o zaman denklemi Şekil 2'deki şemada gösterilen formülleri kullanarak çözebilirsiniz.

Tam bir ikinci dereceden denklem, eğer katsayı x 2 bire eşittir ve denklem şu şekli alır: x 2 + piksel + q = 0. Böyle bir denklem çözüm için verilebileceği gibi denklemin tüm katsayılarının katsayıya bölünmesiyle de elde edilebilir. A, ayakta x 2 .

Şekil 3, indirgenmiş kareyi çözmek için bir diyagramı göstermektedir
denklemler. Bu makalede tartışılan formüllerin uygulanmasına bir örnek verelim.

Örnek. Denklemi çözün

3x 2 + 6x – 6 = 0.

Bu denklemi Şekil 1'deki diyagramda gösterilen formülleri kullanarak çözelim.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3))))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3))))/6 = –1 + √3

Cevap: –1 – √3; –1 + √3

Bu denklemde x'in katsayısının çift sayı olduğunu fark edebilirsiniz, yani b = 6 veya b = 2k, dolayısıyla k = 3. O halde denklemi, şekil D'deki diyagramda gösterilen formülleri kullanarak çözmeye çalışalım. 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Cevap: –1 – √3; –1 + √3. Bu ikinci dereceden denklemdeki tüm katsayıların 3'e bölünebilir olduğunu fark edip bölme işlemini gerçekleştirerek indirgenmiş ikinci dereceden denklemi elde ederiz x 2 + 2x – 2 = 0 Bu denklemi indirgenmiş ikinci dereceden denklem formüllerini kullanarak çözün
denklemler şekil 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Cevap: –1 – √3; –1 + √3.

Gördüğünüz gibi bu denklemi farklı formüller kullanarak çözdüğümüzde aynı cevabı aldık. Bu nedenle, Şekil 1'deki diyagramda gösterilen formüllere tamamen hakim olduğunuzda, her zaman herhangi bir ikinci dereceden denklemi tam olarak çözebileceksiniz.

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.

Paylaşmak