9 formule legate de proprietățile puterilor logaritmilor. Ce este un logaritm? Rezolvarea logaritmilor. Exemple. Proprietățile logaritmilor

proprietăți principale.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

temeiuri identice

Log6 4 + log6 9.

Acum să complicăm puțin sarcina.

Exemple de rezolvare a logaritmilor

Ce se întâmplă dacă baza sau argumentul unui logaritm este o putere? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Desigur, toate aceste reguli au sens dacă se respectă ODZ a logaritmului: a > 0, a ≠ 1, x >

Sarcină. Găsiți sensul expresiei:

Trecerea la o nouă fundație

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

Sarcină. Găsiți sensul expresiei:

Vezi si:


Proprietățile de bază ale logaritmului

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Exponentul este 2,718281828... Pentru a vă aminti exponentul, puteți studia regula: exponentul este egal cu 2,7 și de două ori anul nașterii lui Leo Nikolaevici Tolstoi.

Proprietățile de bază ale logaritmilor

Cunoscând această regulă, veți ști atât valoarea exactă a exponentului, cât și data nașterii lui Lev Tolstoi.


Exemple de logaritmi

Expresii logaritmice

Exemplul 1.
A). x=10ac^2 (a>0,c>0).

Folosind proprietățile 3.5 calculăm

2.

3.

4. Unde .



Exemplul 2. Găsiți x dacă


Exemplul 3. Să fie dată valoarea logaritmilor

Calculați log(x) dacă




Proprietățile de bază ale logaritmilor

Logaritmii, ca orice numere, pot fi adunați, scăzuți și transformați în orice fel. Dar, deoarece logaritmii nu sunt chiar numere obișnuite, există reguli aici, care sunt numite proprietăți principale.

Cu siguranță trebuie să cunoașteți aceste reguli - fără ele, nici o problemă logaritmică serioasă nu poate fi rezolvată. În plus, sunt foarte puține dintre ele - puteți învăța totul într-o singură zi. Asadar, haideti sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceleași baze: logax și logay. Apoi pot fi adăugate și scăzute și:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este egală cu logaritmul coeficientului. Notă: moment cheie Aici - temeiuri identice. Dacă motivele sunt diferite, aceste reguli nu funcționează!

Aceste formule vă vor ajuta să calculați o expresie logaritmică chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Deoarece logaritmii au aceleași baze, folosim formula sumei:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Sarcină. Aflați valoarea expresiei: log2 48 − log2 3.

Bazele sunt aceleași, folosim formula diferenței:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Sarcină. Aflați valoarea expresiei: log3 135 − log3 5.

Din nou bazele sunt aceleași, deci avem:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt calculate separat. Dar după transformări se obțin numere complet normale. Multe sunt construite pe acest fapt hârtii de test. Da, expresii asemănătoare testelor sunt oferite cu toată seriozitatea (uneori practic fără modificări) la examenul de stat unificat.

Extragerea exponentului din logaritm

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă ODZ al logaritmului: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers. , adică Puteți introduce numerele înainte de semnul logaritmului în logaritmul însuși. Acesta este ceea ce se cere cel mai adesea.

Sarcină. Aflați valoarea expresiei: log7 496.

Să scăpăm de gradul din argument folosind prima formulă:
log7 496 = 6 log7 49 = 6 2 = 12

Sarcină. Găsiți sensul expresiei:

Rețineți că numitorul conține un logaritm, a cărui bază și argument sunt puteri exacte: 16 = 24; 49 = 72. Avem:

Cred că ultimul exemplu necesită unele clarificări. Unde s-au dus logaritmii? Până în ultimul moment lucrăm doar cu numitorul.

Formule logaritmice. Exemple de logaritmi soluții.

Am prezentat baza și argumentul logaritmului aflat acolo sub formă de puteri și am scos exponenții - am obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul conțin același număr: log2 7. Deoarece log2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor aritmeticii, cele patru pot fi transferate la numărător, ceea ce s-a făcut. Rezultatul a fost răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă motivele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă fundație vin în ajutor. Să le formulăm sub forma unei teoreme:

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă setăm c = x, obținem:

Din a doua formulă rezultă că baza și argumentul logaritmului pot fi schimbate, dar în acest caz întreaga expresie este „întoarsă”, adică. logaritmul apare la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt doar prin hotărâre ecuații logaritmiceși inegalități.

Cu toate acestea, există probleme care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să ne uităm la câteva dintre acestea:

Sarcină. Aflați valoarea expresiei: log5 16 log2 25.

Rețineți că argumentele ambilor logaritmi conțin puteri exacte. Să scoatem indicatorii: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Acum să „inversăm” al doilea logaritm:

Deoarece produsul nu se schimbă la rearanjarea factorilor, am înmulțit cu calm patru și doi, apoi ne-am ocupat de logaritmi.

Sarcină. Aflați valoarea expresiei: log9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să notăm asta și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, următoarele formule ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, deoarece este doar o valoare logaritmică.

A doua formulă este de fapt o definiție parafrazată. Așa se numește: .

De fapt, ce se întâmplă dacă numărul b este ridicat la o astfel de putere încât numărul b la această putere dă numărul a? Așa este: rezultatul este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni rămân blocați în el.

Asemenea formulelor pentru trecerea la o nouă bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

Sarcină. Găsiți sensul expresiei:

Rețineți că log25 64 = log5 8 - pur și simplu a luat pătratul de la baza și argumentul logaritmului. Luând în considerare regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu știe, aceasta a fost o sarcină reală de la examenul de stat unificat :)

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care cu greu pot fi numite proprietăți - mai degrabă, sunt consecințe ale definiției logaritmului. Apar constant în probleme și, în mod surprinzător, creează probleme chiar și pentru elevii „avansați”.

  1. logaa = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a a acelei baze în sine este egal cu unu.
  2. loga 1 = 0 este. Baza a poate fi orice, dar dacă argumentul conține unul, logaritmul este egal cu zero! Deoarece a0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat la începutul lecției, imprimați-o și rezolvați problemele.

Vezi si:

Logaritmul lui b la baza a denotă expresia. A calcula logaritmul înseamnă a găsi o putere x () la care egalitatea este satisfăcută

Proprietățile de bază ale logaritmului

Este necesar să se cunoască proprietățile de mai sus, deoarece aproape toate problemele și exemplele legate de logaritmi sunt rezolvate pe baza lor. Restul proprietăților exotice pot fi derivate prin manipulări matematice cu aceste formule

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Când calculați formula pentru suma și diferența de logaritmi (3.4) întâlniți destul de des. Restul sunt oarecum complexe, dar într-o serie de sarcini sunt indispensabile pentru simplificarea expresiilor complexe și calcularea valorilor acestora.

Cazuri comune de logaritmi

Unii dintre logaritmii obișnuiți sunt cei în care baza este chiar zece, exponențială sau două.
Logaritmul la baza zece este de obicei numit logaritm zecimal și este pur și simplu notat cu lg(x).

Din înregistrare reiese clar că elementele de bază nu sunt scrise în înregistrare. De exemplu

Un logaritm natural este un logaritm a cărui bază este un exponent (notat cu ln(x)).

Exponentul este 2,718281828... Pentru a vă aminti exponentul, puteți studia regula: exponentul este egal cu 2,7 și de două ori anul nașterii lui Leo Nikolaevici Tolstoi. Cunoscând această regulă, veți ști atât valoarea exactă a exponentului, cât și data nașterii lui Lev Tolstoi.

Și un alt logaritm important pentru baza doi este notat cu

Derivata logaritmului unei funcții este egală cu una împărțită la variabilă

Logaritmul integral sau antiderivat este determinat de relație

Materialul dat este suficient pentru a rezolva o clasă largă de probleme legate de logaritmi și logaritmi. Pentru a vă ajuta să înțelegeți materialul, voi da doar câteva exemple comune din curiculumul scolarși universități.

Exemple de logaritmi

Expresii logaritmice

Exemplul 1.
A). x=10ac^2 (a>0,c>0).

Folosind proprietățile 3.5 calculăm

2.
Prin proprietatea diferenței logaritmilor avem

3.
Folosind proprietățile 3.5 găsim

4. Unde .

O expresie aparent complexă este simplificată pentru a se forma folosind o serie de reguli

Găsirea valorilor logaritmului

Exemplul 2. Găsiți x dacă

Soluţie. Pentru calcul, aplicăm la ultimul termen 5 și 13 proprietăți

O consemnăm și plângem

Deoarece bazele sunt egale, echivalăm expresiile

Logaritmi. Primul nivel.

Să fie dată valoarea logaritmilor

Calculați log(x) dacă

Soluție: Să luăm un logaritm al variabilei pentru a scrie logaritmul prin suma termenilor săi


Acesta este doar începutul cunoașterii noastre cu logaritmii și proprietățile lor. Exersați calculele, îmbogățiți-vă abilitățile practice - veți avea nevoie în curând de cunoștințele acumulate pentru a rezolva ecuații logaritmice. După ce am studiat metodele de bază pentru rezolvarea unor astfel de ecuații, vă vom extinde cunoștințele la un alt subiect la fel de important - inegalitățile logaritmice...

Proprietățile de bază ale logaritmilor

Logaritmii, ca orice numere, pot fi adunați, scăzuți și transformați în orice fel. Dar, deoarece logaritmii nu sunt chiar numere obișnuite, există reguli aici, care sunt numite proprietăți principale.

Cu siguranță trebuie să cunoașteți aceste reguli - fără ele, nici o problemă logaritmică serioasă nu poate fi rezolvată. În plus, sunt foarte puține dintre ele - puteți învăța totul într-o singură zi. Asadar, haideti sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceleași baze: logax și logay. Apoi pot fi adăugate și scăzute și:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este egală cu logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este temeiuri identice. Dacă motivele sunt diferite, aceste reguli nu funcționează!

Aceste formule vă vor ajuta să calculați o expresie logaritmică chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Sarcină. Aflați valoarea expresiei: log6 4 + log6 9.

Deoarece logaritmii au aceleași baze, folosim formula sumei:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Sarcină. Aflați valoarea expresiei: log2 48 − log2 3.

Bazele sunt aceleași, folosim formula diferenței:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Sarcină. Aflați valoarea expresiei: log3 135 − log3 5.

Din nou bazele sunt aceleași, deci avem:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt calculate separat. Dar după transformări se obțin numere complet normale. Multe teste se bazează pe acest fapt. Da, expresii asemănătoare testelor sunt oferite cu toată seriozitatea (uneori practic fără modificări) la examenul de stat unificat.

Extragerea exponentului din logaritm

Acum să complicăm puțin sarcina. Ce se întâmplă dacă baza sau argumentul unui logaritm este o putere? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă ODZ al logaritmului: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers. , adică Puteți introduce numerele înainte de semnul logaritmului în logaritmul însuși.

Cum se rezolvă logaritmii

Acesta este ceea ce se cere cel mai adesea.

Sarcină. Aflați valoarea expresiei: log7 496.

Să scăpăm de gradul din argument folosind prima formulă:
log7 496 = 6 log7 49 = 6 2 = 12

Sarcină. Găsiți sensul expresiei:

Rețineți că numitorul conține un logaritm, a cărui bază și argument sunt puteri exacte: 16 = 24; 49 = 72. Avem:

Cred că ultimul exemplu necesită unele clarificări. Unde s-au dus logaritmii? Până în ultimul moment lucrăm doar cu numitorul. Am prezentat baza și argumentul logaritmului aflat acolo sub formă de puteri și am scos exponenții - am obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul conțin același număr: log2 7. Deoarece log2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor aritmeticii, cele patru pot fi transferate la numărător, ceea ce s-a făcut. Rezultatul a fost răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă motivele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă fundație vin în ajutor. Să le formulăm sub forma unei teoreme:

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă setăm c = x, obținem:

Din a doua formulă rezultă că baza și argumentul logaritmului pot fi schimbate, dar în acest caz întreaga expresie este „întoarsă”, adică. logaritmul apare la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există probleme care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să ne uităm la câteva dintre acestea:

Sarcină. Aflați valoarea expresiei: log5 16 log2 25.

Rețineți că argumentele ambilor logaritmi conțin puteri exacte. Să scoatem indicatorii: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Acum să „inversăm” al doilea logaritm:

Deoarece produsul nu se schimbă la rearanjarea factorilor, am înmulțit cu calm patru și doi, apoi ne-am ocupat de logaritmi.

Sarcină. Aflați valoarea expresiei: log9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să notăm asta și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, următoarele formule ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, deoarece este doar o valoare logaritmică.

A doua formulă este de fapt o definiție parafrazată. Așa se numește: .

De fapt, ce se întâmplă dacă numărul b este ridicat la o astfel de putere încât numărul b la această putere dă numărul a? Așa este: rezultatul este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni rămân blocați în el.

Asemenea formulelor pentru trecerea la o nouă bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

Sarcină. Găsiți sensul expresiei:

Rețineți că log25 64 = log5 8 - pur și simplu a luat pătratul de la baza și argumentul logaritmului. Luând în considerare regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu știe, aceasta a fost o sarcină reală de la examenul de stat unificat :)

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care cu greu pot fi numite proprietăți - mai degrabă, sunt consecințe ale definiției logaritmului. Apar constant în probleme și, în mod surprinzător, creează probleme chiar și pentru elevii „avansați”.

  1. logaa = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a a acelei baze în sine este egal cu unu.
  2. loga 1 = 0 este. Baza a poate fi orice, dar dacă argumentul conține unul, logaritmul este egal cu zero! Deoarece a0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat la începutul lecției, imprimați-o și rezolvați problemele.

Logaritmul unui număr N bazat pe A numit exponent X , la care trebuie să construiți A pentru a obține numărul N

Cu conditia ca
,
,

Din definiția logaritmului rezultă că
, adică
- această egalitate este identitatea logaritmică de bază.

Logaritmii la baza 10 se numesc logaritmi zecimali. În loc de
scrie
.

Logaritmi la bază e sunt numite naturale și sunt desemnate
.

Proprietățile de bază ale logaritmilor.

    Logaritmul lui unu este egal cu zero pentru orice bază.

    Logaritmul produsului egal cu suma logaritmii factorilor.

3) Logaritmul coeficientului este egal cu diferența logaritmilor


Factor
numit modul de tranziție de la logaritmi la bază A la logaritmi la bază b .

Folosind proprietățile 2-5, este adesea posibil să se reducă logaritmul unei expresii complexe la rezultatul operațiilor aritmetice simple pe logaritmi.

De exemplu,

Astfel de transformări ale unui logaritm se numesc logaritmi. Transformările inverse logaritmilor se numesc potențare.

Capitolul 2. Elemente de matematică superioară.

1. Limite

Limita funcției
este un număr finit A dacă, ca xx 0 pentru fiecare prestabilit
, există un astfel de număr
că de îndată ce
, Acea
.

O funcție care are o limită diferă de aceasta printr-o sumă infinitezimală:
, unde- b.m.v., adică.
.

Exemplu. Luați în considerare funcția
.

Când te străduiești
, funcție y tinde spre zero:

1.1. Teoreme de bază despre limite.

    Limita unei valori constante este egală cu această valoare constantă

.

    Limita sumei (diferenței) unui număr finit de funcții este egală cu suma (diferenței) limitelor acestor funcții.

    Limita produsului unui număr finit de funcții este egală cu produsul limitelor acestor funcții.

    Limita câtului a două funcții este egală cu câtul limitelor acestor funcții dacă limita numitorului nu este zero.

Limite minunate

,
, Unde

1.2. Exemple de calcul al limitelor

Cu toate acestea, nu toate limitele sunt calculate atât de ușor. Mai des, calcularea limitei se reduce la dezvăluirea unei incertitudini de tipul: sau .

.

2. Derivata unei functii

Să avem o funcție
, continuu pe segment
.

Argument a primit o oarecare creștere
. Apoi funcția va primi un increment
.

Valoarea argumentului corespunde valorii funcției
.

Valoarea argumentului
corespunde valorii funcției.

Prin urmare, .

Să găsim limita acestui raport la
. Dacă această limită există, atunci se numește derivată a funcției date.

Definiția 3 Derivată a unei funcții date
prin argumentare se numește limita raportului dintre incrementul unei funcții și incrementul argumentului, când incrementul argumentului tinde în mod arbitrar spre zero.

Derivată a unei funcții
poate fi desemnat astfel:

; ; ; .

Definiția 4 Operația de găsire a derivatei unei funcții se numește diferenţiere.

2.1. Sensul mecanic al derivatului.

Să luăm în considerare mișcarea rectilinie a unui corp rigid sau punct material.

Lasă la un moment dat punct de mișcare
era la distanta din pozitia de start
.

După o perioadă de timp
ea sa deplasat o distanta
. Atitudine =- viteza medie a unui punct material
. Să găsim limita acestui raport, ținând cont de faptul că
.

În consecință, determinarea vitezei instantanee de mișcare a unui punct material se reduce la găsirea derivatei traseului în raport cu timpul.

2.2. Valoarea geometrică a derivatei

Să avem o funcție definită grafic
.

Orez. 1. Sensul geometric al derivatului

Dacă
, apoi punct
, se va deplasa de-a lungul curbei, apropiindu-se de punct
.

Prin urmare
, adică valoarea derivatei pentru o valoare dată a argumentului egal numeric cu tangentei unghiului format de tangenta la un punct dat cu directia pozitiva a axei
.

2.3. Tabelul formulelor de diferențiere de bază.

Funcția de putere

Functie exponentiala

Funcția logaritmică

Funcția trigonometrică

Funcția trigonometrică inversă

2.4. Reguli de diferențiere.

Derivat din

Derivată a sumei (diferenței) funcțiilor


Derivată a produsului a două funcții


Derivată a coeficientului a două funcții


2.5. Derivată a unei funcții complexe.

Să fie dată funcția
astfel încât să poată fi reprezentat sub formă

Și
, unde variabila este un argument intermediar, atunci

Derivata unei functii complexe este egala cu produsul derivatei functiei date fata de argumentul intermediar si derivata argumentului intermediar fata de x.

Exemplul 1.

Exemplul 2.

3. Funcția diferențială.

Să fie
, diferentiabil pe un anumit interval
lăsați-l să plece la această funcție are o derivată

,

atunci putem scrie

(1),

Unde - o cantitate infinitezimală,

de cand

Înmulțirea tuturor termenilor de egalitate (1) cu
avem:

Unde
- b.m.v. de ordin superior.

Magnitudinea
numită diferenţială a funcţiei
si este desemnat

.

3.1. Valoarea geometrică a diferenţialului.

Să fie dată funcția
.

Fig.2. Sensul geometric al diferenţialului.

.

Evident, diferența funcției
este egală cu incrementul ordonatei tangentei într-un punct dat.

3.2. Derivate și diferențiale de diverse ordine.

În cazul în care există
, Apoi
se numeste prima derivata.

Derivata primei derivate se numeste derivata de ordinul doi si se scrie
.

Derivată de ordinul al n-lea al funcției
se numește derivată de ordinul (n-1) și se scrie:

.

Diferenţialul diferenţialului unei funcţii se numeşte a doua diferenţială sau diferenţială de ordinul doi.

.

.

3.3 Rezolvarea problemelor biologice folosind diferențierea.

Sarcina 1. Studiile au arătat că creșterea unei colonii de microorganisme respectă legea
, Unde N – numărul de microorganisme (în mii), t – timp (zile).

b) Populația coloniei va crește sau va scădea în această perioadă?

Răspuns. Dimensiunea coloniei va crește.

Sarcina 2. Apa din lac este testată periodic pentru a monitoriza conținutul de bacterii patogene. Prin t zile după testare, concentrația de bacterii este determinată de raport

.

Când va avea lacul o concentrație minimă de bacterii și se va putea înota în el?

Soluție: O funcție atinge max sau min atunci când derivata ei este zero.

,

Să stabilim că maximul sau minul va fi în 6 zile. Pentru a face acest lucru, să luăm derivata a doua.


Răspuns: După 6 zile va exista o concentrație minimă de bacterii.


Accentul acestui articol este logaritm. Aici vom da definiția logaritmului, arată desemnare acceptată, vom da exemple de logaritmi și vom vorbi despre logaritmi naturali și zecimali. După aceasta vom lua în considerare identitatea logaritmică de bază.

Navigare în pagină.

Definiţia logarithm

Conceptul de logaritm apare atunci când rezolvați o problemă într-un anumit sens invers, când trebuie să găsiți un exponent în valoare cunoscută grad și bază cunoscută.

Dar destule prefațe, este timpul să răspundem la întrebarea „ce este un logaritm”? Să dăm definiția corespunzătoare.

Definiție.

Logaritmul lui b la baza a, unde a>0, a≠1 și b>0 este exponentul la care trebuie să creșteți numărul a pentru a obține b ca rezultat.

În această etapă, observăm că cuvântul rostit „logaritm” ar trebui să ridice imediat două întrebări ulterioare: „ce număr” și „pe ce bază”. Cu alte cuvinte, pur și simplu nu există logaritm, ci doar logaritmul unui număr la o anumită bază.

Să intrăm imediat notație logaritmică: logaritmul unui număr b la baza a este de obicei notat ca log a b. Logaritmul unui număr b în baza e și logaritmul în baza 10 au propriile lor denumiri speciale lnb și, respectiv, logb, adică nu scriu log e b, ci lnb și nu log 10 b, ci lgb.

Acum putem da: .
Și înregistrările nu au sens, deoarece în primul dintre ele există un număr negativ sub semnul logaritmului, în al doilea există un număr negativ în bază, iar în al treilea există un număr negativ sub semnul logaritmului și o unitate în baza.

Acum să vorbim despre reguli de citire a logaritmilor. Log a b este citit ca „logaritmul lui b la baza a”. De exemplu, log 2 3 este logaritmul de trei la baza 2 și este logaritmul de două virgulă două treimi la baza 2 Rădăcină pătrată din cinci. Se numește logaritmul la baza e logaritmul natural, iar notația lnb citește „logaritmul natural al lui b”. De exemplu, ln7 este logaritmul natural al lui șapte și îl vom citi ca logaritmul natural al lui pi. Logaritmul de bază 10 are, de asemenea, un nume special - logaritm zecimal, iar lgb este citit ca „logaritm zecimal al lui b”. De exemplu, lg1 este logaritmul zecimal de unu, iar lg2.75 este logaritmul zecimal de două virgulă șapte cinci sutimi.

Merită să ne oprim separat asupra condițiilor a>0, a≠1 și b>0, în care este dată definiția logaritmului. Să explicăm de unde provin aceste restricții. O egalitate de formă numită , care decurge direct din definiția logaritmului dată mai sus, ne va ajuta să facem acest lucru.

Să începem cu a≠1. Deoarece unu la orice putere este egal cu unu, egalitatea poate fi adevărată numai când b=1, dar log 1 1 poate fi orice număr real. Pentru a evita această ambiguitate, se presupune a≠1.

Să justificăm oportunitatea condiției a>0. Cu a=0, prin definiția unui logaritm, am avea egalitate, care este posibilă doar cu b=0. Dar atunci log 0 0 poate fi orice număr real diferit de zero, deoarece de la zero la orice putere diferită de zero este zero. Condiția a≠0 ne permite să evităm această ambiguitate. Și când a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

În sfârșit, din inegalitatea a>0 rezultă condiția b>0, deoarece , iar valoarea unei puteri cu o bază pozitivă a este întotdeauna pozitivă.

Pentru a încheia acest punct, să presupunem că definiția declarată a logaritmului vă permite să indicați imediat valoarea logaritmului atunci când numărul de sub semnul logaritmului este o anumită putere a bazei. Într-adevăr, definiția unui logaritm ne permite să afirmăm că dacă b=a p, atunci logaritmul numărului b la baza a este egal cu p. Adică, logul de egalitate a a p =p este adevărat. De exemplu, știm că 2 3 =8, atunci log 2 8=3. Vom vorbi mai multe despre asta în articol.

Menținerea confidențialității dvs. este importantă pentru noi. Din acest motiv, am dezvoltat o Politică de confidențialitate care descrie modul în care folosim și stocăm informațiile dumneavoastră. Vă rugăm să examinați practicile noastre de confidențialitate și să ne comunicați dacă aveți întrebări.

Colectarea și utilizarea informațiilor personale

Informațiile personale se referă la date care pot fi folosite pentru a identifica sau contacta o anumită persoană.

Vi se poate cere să furnizați informațiile dumneavoastră personale în orice moment când ne contactați.

Mai jos sunt câteva exemple de tipuri de informații personale pe care le putem colecta și cum putem folosi aceste informații.

Ce informații personale colectăm:

  • Când trimiteți o cerere pe site, este posibil să colectăm diverse informații, inclusiv numele, numărul de telefon, adresa dvs E-mail etc.

Cum folosim informațiile dumneavoastră personale:

  • Colectat de noi Informații personale ne permite să vă contactăm și să vă informăm despre oferte unice, promoții și alte evenimente și evenimente viitoare.
  • Din când în când, putem folosi informațiile dumneavoastră personale pentru a trimite notificări și comunicări importante.
  • De asemenea, putem folosi informații personale în scopuri interne, cum ar fi efectuarea de audituri, analize de date și diverse cercetări pentru a îmbunătăți serviciile pe care le oferim și pentru a vă oferi recomandări cu privire la serviciile noastre.
  • Dacă participați la o tragere la sorți, la un concurs sau la o promoție similară, este posibil să folosim informațiile pe care le furnizați pentru a administra astfel de programe.

Dezvăluirea informațiilor către terți

Nu dezvăluim informațiile primite de la dumneavoastră către terți.

Excepții:

  • Daca este necesar, in conditiile legii, procedura judiciara, V proces, și/sau pe baza cererilor publice sau a solicitărilor de la agentii guvernamentale pe teritoriul Federației Ruse - dezvăluie informațiile tale personale. De asemenea, putem dezvălui informații despre dumneavoastră dacă stabilim că o astfel de dezvăluire este necesară sau adecvată pentru securitate, aplicarea legii sau alte scopuri de importanță publică.
  • În cazul unei reorganizări, fuziuni sau vânzări, este posibil să transferăm informațiile personale pe care le colectăm terței părți succesoare aplicabile.

Protecția informațiilor personale

Luăm măsuri de precauție - inclusiv administrative, tehnice și fizice - pentru a vă proteja informațiile personale împotriva pierderii, furtului și utilizării greșite, precum și împotriva accesului, dezvăluirii, modificării și distrugerii neautorizate.

Respectarea vieții private la nivelul companiei

Pentru a ne asigura că informațiile dumneavoastră personale sunt în siguranță, comunicăm angajaților noștri standarde de confidențialitate și securitate și aplicăm strict practicile de confidențialitate.

În raport cu

se poate stabili sarcina de a găsi oricare dintre cele trei numere din celelalte două date. Dacă sunt date a și apoi N, se găsesc prin exponențiere. Dacă N și apoi a sunt date luând rădăcina gradului x (sau ridicând-o la putere). Acum luați în considerare cazul în care, având în vedere a și N, trebuie să găsim x.

Fie numărul N pozitiv: numărul a să fie pozitiv și nu egal cu unu: .

Definiție. Logaritmul numărului N față de baza a este exponentul la care trebuie ridicat a pentru a obține numărul N; logaritmul este notat cu

Astfel, în egalitatea (26.1) exponentul se găsește ca logaritmul lui N la baza a. Postări

au acelasi sens. Egalitatea (26.1) este uneori numită identitatea principală a teoriei logaritmilor; în realitate exprimă definiţia conceptului de logaritm. De această definiție Baza logaritmului a este întotdeauna pozitivă și diferită de unitate; numărul logaritmic N este pozitiv. Numerele negative și zero nu au logaritmi. Se poate dovedi că orice număr cu o bază dată are un logaritm bine definit. Prin urmare egalitatea presupune . Rețineți că condiția este esențială aici; în caz contrar, concluzia nu ar fi justificată, deoarece egalitatea este adevărată pentru orice valori ale lui x și y.

Exemplul 1. Găsiți

Soluţie. Pentru a obține un număr, trebuie să ridicați baza 2 la puterea Prin urmare.

Puteți face notițe atunci când rezolvați astfel de exemple în următoarea formă:

Exemplul 2. Găsiți .

Soluţie. Avem

În exemplele 1 și 2, am găsit cu ușurință logaritmul dorit reprezentând numărul logaritmului ca o putere a bazei cu un exponent rațional. În cazul general, de exemplu, pentru etc., acest lucru nu se poate face, deoarece logaritmul are o valoare irațională. Să acordăm atenție unei probleme legate de această afirmație. În paragraful 12, am dat conceptul de posibilitatea de a determina orice putere reală a unui număr pozitiv dat. Acest lucru a fost necesar pentru introducerea logaritmilor, care, în general, pot fi numere iraționale.

Să ne uităm la câteva proprietăți ale logaritmilor.

Proprietatea 1. Dacă numărul și baza sunt egale, atunci logaritmul este egal cu unu și, invers, dacă logaritmul este egal cu unu, atunci numărul și baza sunt egale.

Dovada. Fie Prin definiția unui logaritm avem și de unde

Dimpotrivă, să fie Atunci prin definiție

Proprietatea 2. Logaritmul unu la orice bază este egal cu zero.

Dovada. Prin definiția unui logaritm (puterea zero a oricărei baze pozitive este egală cu unu, vezi (10.1)). De aici

Q.E.D.

Afirmația inversă este de asemenea adevărată: dacă , atunci N = 1. Într-adevăr, avem .

Înainte de a formula următoarea proprietate a logaritmilor, să fim de acord să spunem că două numere a și b se află de aceeași parte a celui de-al treilea număr c dacă ambele sunt mai mari decât c sau mai mici decât c. Dacă unul dintre aceste numere este mai mare decât c, iar celălalt este mai mic decât c, atunci vom spune că se află de-a lungul laturi diferite din sat

Proprietatea 3. Dacă numărul și baza se află pe aceeași parte a unuia, atunci logaritmul este pozitiv; Dacă numărul și baza se află pe laturile opuse ale unuia, atunci logaritmul este negativ.

Dovada proprietății 3 se bazează pe faptul că puterea lui a este mai mare decât unu dacă baza este mai mare decât unu și exponentul este pozitiv sau baza este mai mică decât unu și exponentul este negativ. O putere este mai mică decât unu dacă baza este mai mare decât unu și exponentul este negativ sau baza este mai mică decât unu și exponentul este pozitiv.

Există patru cazuri de luat în considerare:

Ne vom limita la analiza pe primul dintre ele, cititorul le va lua în considerare pe restul singur.

Fie atunci, în egalitate, exponentul nu poate fi nici negativ, nici egal cu zero, prin urmare, este pozitiv, adică așa cum trebuie demonstrat.

Exemplul 3. Aflați care dintre logaritmii de mai jos sunt pozitivi și care sunt negativi:

Rezolvare, a) deoarece numărul 15 și baza 12 sunt situate pe aceeași parte a unuia;

b) întrucât 1000 și 2 sunt situate pe o parte a unității; în acest caz, nu este important ca baza să fie mai mare decât numărul logaritmic;

c) deoarece 3.1 și 0.8 se află pe părți opuse ale unității;

G) ; De ce?

d) ; De ce?

Următoarele proprietăți 4-6 sunt adesea numite reguli de logaritmare: ele permit, cunoscând logaritmii unor numere, să se găsească logaritmii produsului lor, câtul și gradul fiecăruia dintre ele.

Proprietatea 4 (regula logaritmului produsului). Logaritmul produsului mai multor numere pozitive la o bază dată este egal cu suma logaritmilor acestor numere la aceeași bază.

Dovada. Fie numerele date pozitive.

Pentru logaritmul produsului lor, scriem egalitatea (26.1) care definește logaritmul:

De aici vom găsi

Comparând exponenții primei și ultimei expresii, obținem egalitatea necesară:

Rețineți că condiția este esențială; logaritmul produsului a două numere negative are sens, dar în acest caz obținem

În general, dacă produsul mai multor factori este pozitiv, atunci logaritmul său este egal cu suma logaritmilor valorilor absolute ale acestor factori.

Proprietatea 5 (regula pentru luarea logaritmilor de coeficienti). Logaritmul unui coeficient de numere pozitive este egal cu diferența dintre logaritmii dividendului și divizorului, luați la aceeași bază. Dovada. Găsim în mod constant

Q.E.D.

Proprietatea 6 (regula logaritmului puterii). Logaritmul puterii oricărui număr pozitiv este egal cu logaritmul acelui număr înmulțit cu exponent.

Dovada. Să scriem din nou identitatea principală (26.1) pentru numărul:

Q.E.D.

Consecinţă. Logaritmul unei rădăcini a unui număr pozitiv este egal cu logaritmul radicalului împărțit la exponentul rădăcinii:

Valabilitatea acestui corolar poate fi dovedită imaginând cum și folosind proprietatea 6.

Exemplul 4. Luați logaritmul la baza a:

a) (se presupune că toate valorile b, c, d, e sunt pozitive);

b) (se presupune că ).

Soluție, a) Este convenabil să trecem la puteri fracționale în această expresie:

Pe baza egalităților (26.5)-(26.7), putem scrie acum:

Observăm că asupra logaritmilor numerelor se efectuează operații mai simple decât asupra numerelor în sine: la înmulțirea numerelor se adună logaritmii acestora, la împărțire se scad etc.

De aceea, logaritmii sunt utilizați în practica de calcul (a se vedea paragraful 29).

Acțiunea inversă a logaritmului se numește potențare și anume: potențarea este acțiunea prin care numărul însuși este găsit dintr-un logaritm dat al unui număr. În esență, potențarea nu este o acțiune specială: se rezumă la ridicarea unei baze la o putere (egală cu logaritmul unui număr). Termenul de „potenciare” poate fi considerat sinonim cu termenul de „exponentiare”.

La potențare, trebuie să utilizați regulile inverse regulilor de logaritmare: înlocuiți suma logaritmilor cu logaritmul produsului, diferența de logaritmi cu logaritmul coeficientului etc. În special, dacă există un factor în față a semnului logaritmului, apoi în timpul potențarii acesta trebuie transferat la gradele exponente sub semnul logaritmului.

Exemplul 5. Aflați N dacă se știe că

Soluţie. În legătură cu regula de potențare tocmai enunțată, vom transfera factorii 2/3 și 1/3 care stau în fața semnelor logaritmilor din partea dreaptă a acestei egalități în exponenți sub semnele acestor logaritmi; primim

Acum înlocuim diferența de logaritmi cu logaritmul coeficientului:

pentru a obține ultima fracție din acest lanț de egalități, am eliberat fracția anterioară de iraționalitatea la numitor (clauza 25).

Proprietatea 7. Dacă baza este mai mare decât unu, atunci număr mai mare are un logaritm mai mare (și un număr mai mic are unul mai mic), dacă baza este mai mică de unu, atunci un număr mai mare are un logaritm mai mic (și un număr mai mic are unul mai mare).

Această proprietate este, de asemenea, formulată ca o regulă pentru luarea logaritmilor inegalităților, ale căror ambele părți sunt pozitive:

La logaritmizarea inegalităților la o bază mai mare decât unu, semnul inegalității este păstrat, iar la logaritmizarea la o bază mai mică de unu, semnul inegalității se schimbă la opus (a se vedea și paragraful 80).

Demonstrarea se bazează pe proprietățile 5 și 3. Luați în considerare cazul în care Dacă , atunci și, luând logaritmi, obținem

(a și N/M se află pe aceeași parte a unității). De aici

Urmează cazul a, cititorul își va da seama singur.

Acțiune