Reducerea ecuațiilor pătratice. Algoritm pentru rezolvarea ecuațiilor pătratice cu ajutorul formulelor rădăcinilor. Ecuații cuadratice. pe scurt despre principalul lucru

Primul nivel

Ecuații cuadratice. Ghid cuprinzător (2019)

În termenul „ecuație pătratică”, cuvântul cheie este „quadratic”. Aceasta înseamnă că ecuația trebuie să conțină în mod necesar o variabilă (același x) pătrat și nu ar trebui să existe x la cea de-a treia putere (sau mai mare).

Rezolvarea multor ecuații se reduce la rezolvarea ecuațiilor pătratice.

Să învățăm să determinăm că aceasta este o ecuație pătratică și nu o altă ecuație.

Exemplul 1.

Să scăpăm de numitor și să înmulțim fiecare termen al ecuației cu

Să mutăm totul în partea stângă și să aranjam termenii în ordinea descrescătoare a puterilor lui X

Acum putem spune cu încredere că această ecuație este pătratică!

Exemplul 2.

Înmulțiți părțile din stânga și din dreapta cu:

Această ecuație, deși a fost inițial în ea, nu este pătratică!

Exemplul 3.

Să înmulțim totul cu:

Infricosator? Gradul al patrulea și al doilea... Totuși, dacă facem o înlocuire, vom vedea că avem o ecuație pătratică simplă:

Exemplul 4.

Se pare că este acolo, dar să aruncăm o privire mai atentă. Să mutăm totul în partea stângă:

Vezi, este redusă - și acum este o simplă ecuație liniară!

Acum încercați să determinați singuri care dintre următoarele ecuații sunt pătratice și care nu:

Exemple:

Raspunsuri:

  1. pătrat;
  2. pătrat;
  3. nu pătrat;
  4. nu pătrat;
  5. nu pătrat;
  6. pătrat;
  7. nu pătrat;
  8. pătrat.

În mod convențional, matematicienii împart toate ecuațiile pătratice în următoarele tipuri:

  • Completează ecuațiile pătratice- ecuații în care coeficienții și, precum și termenul liber c, nu sunt egali cu zero (ca în exemplu). În plus, printre ecuațiile pătratice complete există dat- acestea sunt ecuații în care coeficientul (ecuația din exemplul unu este nu numai completă, ci și redusă!)
  • Ecuații patratice incomplete- ecuații în care coeficientul și/sau termenul liber c sunt egali cu zero:

    Sunt incomplete pentru că le lipsește un element. Dar ecuația trebuie să conțină întotdeauna x pătrat!!! În caz contrar, nu va mai fi o ecuație pătratică, ci o altă ecuație.

De ce au venit cu o asemenea împărțire? S-ar părea că există un X pătrat și bine. Această împărțire este determinată de metodele de soluție. Să ne uităm la fiecare dintre ele mai detaliat.

Rezolvarea ecuațiilor pătratice incomplete

În primul rând, să ne concentrăm pe rezolvarea ecuațiilor pătratice incomplete - sunt mult mai simple!

Există tipuri de ecuații pătratice incomplete:

  1. , în această ecuație coeficientul este egal.
  2. , în această ecuație termenul liber este egal cu.
  3. , în această ecuație coeficientul și termenul liber sunt egali.

1. i. Deoarece știm să luăm rădăcina pătrată, să exprimăm din această ecuație

Expresia poate fi fie negativă, fie pozitivă. Un număr pătrat nu poate fi negativ, deoarece la înmulțirea a două numere negative sau două pozitive, rezultatul va fi întotdeauna un număr pozitiv, deci: dacă, atunci ecuația nu are soluții.

Și dacă, atunci obținem două rădăcini. Nu este nevoie să memorezi aceste formule. Principalul lucru este că trebuie să știți și să vă amintiți întotdeauna că nu poate fi mai puțin.

Să încercăm să rezolvăm câteva exemple.

Exemplul 5:

Rezolvați ecuația

Acum tot ce rămâne este să extragi rădăcina din partea stângă și dreaptă. La urma urmei, îți amintești cum să extragi rădăcini?

Răspuns:

Nu uita niciodată de rădăcinile cu semn negativ!!!

Exemplul 6:

Rezolvați ecuația

Răspuns:

Exemplul 7:

Rezolvați ecuația

Oh! Pătratul unui număr nu poate fi negativ, ceea ce înseamnă că ecuația

fara radacini!

Pentru astfel de ecuații care nu au rădăcini, matematicienii au venit cu o pictogramă specială - (set gol). Și răspunsul poate fi scris astfel:

Răspuns:

Astfel, această ecuație pătratică are două rădăcini. Nu există restricții aici, deoarece nu am extras rădăcina.
Exemplul 8:

Rezolvați ecuația

Să scoatem factorul comun din paranteze:

Prin urmare,

Această ecuație are două rădăcini.

Răspuns:

Cel mai simplu tip de ecuații pătratice incomplete (deși toate sunt simple, nu?). Evident, această ecuație are întotdeauna o singură rădăcină:

Ne vom dispensa de exemple aici.

Rezolvarea ecuațiilor pătratice complete

Vă reamintim că o ecuație pătratică completă este o ecuație a ecuației de formă unde

Rezolvarea ecuațiilor pătratice complete este puțin mai dificilă (doar puțin) decât acestea.

Tine minte, Orice ecuație pătratică poate fi rezolvată folosind un discriminant! Chiar incomplet.

Celelalte metode te vor ajuta să o faci mai repede, dar dacă ai probleme cu ecuațiile pătratice, mai întâi stăpânește soluția folosind discriminantul.

1. Rezolvarea ecuațiilor pătratice folosind un discriminant.

Rezolvarea ecuațiilor pătratice folosind această metodă este foarte simplă; principalul lucru este să vă amintiți succesiunea de acțiuni și câteva formule.

Dacă, atunci ecuația are rădăcină. Atentie speciala Fă un pas. Discriminantul () ne spune numărul de rădăcini ale ecuației.

  • Dacă, atunci formula din pas se va reduce la. Astfel, ecuația va avea doar o rădăcină.
  • Dacă, atunci nu vom putea extrage rădăcina discriminantului la pas. Aceasta indică faptul că ecuația nu are rădăcini.

Să ne întoarcem la ecuațiile noastre și să vedem câteva exemple.

Exemplul 9:

Rezolvați ecuația

Pasul 1 sărim.

Pasul 2.

Găsim discriminantul:

Aceasta înseamnă că ecuația are două rădăcini.

Pasul 3.

Răspuns:

Exemplul 10:

Rezolvați ecuația

Ecuația este prezentată în formă standard, deci Pasul 1 sărim.

Pasul 2.

Găsim discriminantul:

Aceasta înseamnă că ecuația are o singură rădăcină.

Răspuns:

Exemplul 11:

Rezolvați ecuația

Ecuația este prezentată în formă standard, deci Pasul 1 sărim.

Pasul 2.

Găsim discriminantul:

Aceasta înseamnă că nu vom putea extrage rădăcina discriminantului. Nu există rădăcini ale ecuației.

Acum știm cum să scriem corect astfel de răspunsuri.

Răspuns: fara radacini

2. Rezolvarea ecuațiilor pătratice folosind teorema lui Vieta.

Dacă vă amintiți, există un tip de ecuație care se numește redusă (când coeficientul a este egal cu):

Astfel de ecuații sunt foarte ușor de rezolvat folosind teorema lui Vieta:

Suma rădăcinilor dat ecuația pătratică este egală, iar produsul rădăcinilor este egal.

Exemplul 12:

Rezolvați ecuația

Această ecuație poate fi rezolvată folosind teorema lui Vieta deoarece .

Suma rădăcinilor ecuației este egală, adică. obținem prima ecuație:

Și produsul este egal cu:

Să compunem și să rezolvăm sistemul:

  • Și. Suma este egală cu;
  • Și. Suma este egală cu;
  • Și. Suma este egală.

și sunt soluția pentru sistem:

Răspuns: ; .

Exemplul 13:

Rezolvați ecuația

Răspuns:

Exemplul 14:

Rezolvați ecuația

Ecuația este dată, ceea ce înseamnă:

Răspuns:

ECUAȚII CADRATICE. NIVEL MEDIU

Ce este o ecuație pătratică?

Cu alte cuvinte, o ecuație pătratică este o ecuație de forma, unde - necunoscutul, - unele numere și.

Numărul se numește cel mai mare sau primul coeficient ecuație pătratică, - al doilea coeficient, A - membru gratuit.

De ce? Pentru că dacă ecuația devine imediat liniară, pentru că va disparea.

În acest caz, și poate fi egal cu zero. În această ecuație de scaun se numește incompletă. Dacă toți termenii sunt la locul lor, adică, ecuația este completă.

Soluții la diferite tipuri de ecuații pătratice

Metode de rezolvare a ecuațiilor pătratice incomplete:

În primul rând, să ne uităm la metodele de rezolvare a ecuațiilor pătratice incomplete - sunt mai simple.

Putem distinge următoarele tipuri de ecuații:

I., în această ecuație coeficientul și termenul liber sunt egali.

II. , în această ecuație coeficientul este egal.

III. , în această ecuație termenul liber este egal cu.

Acum să ne uităm la soluția pentru fiecare dintre aceste subtipuri.

Evident, această ecuație are întotdeauna o singură rădăcină:

Un număr pătrat nu poate fi negativ, deoarece atunci când înmulțiți două numere negative sau două pozitive, rezultatul va fi întotdeauna un număr pozitiv. De aceea:

dacă, atunci ecuația nu are soluții;

dacă avem două rădăcini

Nu este nevoie să memorezi aceste formule. Principalul lucru de reținut este că nu poate fi mai puțin.

Exemple:

Solutii:

Răspuns:

Nu uita niciodată de rădăcinile cu semn negativ!

Pătratul unui număr nu poate fi negativ, ceea ce înseamnă că ecuația

fara radacini.

Pentru a nota pe scurt că o problemă nu are soluții, folosim pictograma set gol.

Răspuns:

Deci, această ecuație are două rădăcini: și.

Răspuns:

Să scoatem factorul comun din paranteze:

Produsul este egal cu zero dacă cel puțin unul dintre factori este egal cu zero. Aceasta înseamnă că ecuația are o soluție atunci când:

Deci, această ecuație pătratică are două rădăcini: și.

Exemplu:

Rezolvați ecuația.

Soluţie:

Să factorizăm partea stângă a ecuației și să găsim rădăcinile:

Răspuns:

Metode de rezolvare a ecuațiilor pătratice complete:

1. Discriminant

Rezolvarea ecuațiilor pătratice în acest fel este ușoară, principalul lucru este să vă amintiți succesiunea de acțiuni și câteva formule. Amintiți-vă, orice ecuație pătratică poate fi rezolvată folosind un discriminant! Chiar incomplet.

Ați observat rădăcina de la discriminant în formula pentru rădăcini? Dar discriminantul poate fi negativ. Ce să fac? Trebuie să acordăm o atenție deosebită pasului 2. Discriminantul ne spune numărul de rădăcini ale ecuației.

  • Dacă, atunci ecuația are rădăcini:
  • Dacă, atunci ecuația are aceleași rădăcini și, de fapt, o rădăcină:

    Astfel de rădăcini se numesc rădăcini duble.

  • Dacă, atunci rădăcina discriminantului nu este extrasă. Aceasta indică faptul că ecuația nu are rădăcini.

De ce este posibil un număr diferit de rădăcini? Să ne întoarcem la semnificația geometrică a ecuației pătratice. Graficul funcției este o parabolă:

Într-un caz special, care este o ecuație pătratică, . Aceasta înseamnă că rădăcinile unei ecuații pătratice sunt punctele de intersecție cu axa (axa) absciselor. O parabolă poate să nu intersecteze axa deloc sau o poate intersecta într-unul (când vârful parabolei se află pe axă) sau două puncte.

În plus, coeficientul este responsabil pentru direcția ramurilor parabolei. Dacă, atunci ramurile parabolei sunt îndreptate în sus, iar dacă, atunci în jos.

Exemple:

Solutii:

Răspuns:

Răspuns: .

Răspuns:

Asta înseamnă că nu există soluții.

Răspuns: .

2. Teorema lui Vieta

Este foarte ușor de folosit teorema lui Vieta: trebuie doar să alegeți o pereche de numere al căror produs este egal cu termenul liber al ecuației, iar suma este egală cu al doilea coeficient luat cu semnul opus.

Este important să ne amintim că teorema lui Vieta poate fi aplicată numai în ecuații pătratice reduse ().

Să ne uităm la câteva exemple:

Exemplul #1:

Rezolvați ecuația.

Soluţie:

Această ecuație poate fi rezolvată folosind teorema lui Vieta deoarece . Alți coeficienți: ; .

Suma rădăcinilor ecuației este:

Și produsul este egal cu:

Să selectăm perechi de numere al căror produs este egal și să verificăm dacă suma lor este egală:

  • Și. Suma este egală cu;
  • Și. Suma este egală cu;
  • Și. Suma este egală.

și sunt soluția pentru sistem:

Astfel, și sunt rădăcinile ecuației noastre.

Răspuns: ; .

Exemplul #2:

Soluţie:

Să selectăm perechi de numere care dau în produs și apoi să verificăm dacă suma lor este egală:

si: dau in total.

si: dau in total. Pentru a obține, este suficient să schimbați pur și simplu semnele presupuselor rădăcini: și, la urma urmei, produsul.

Răspuns:

Exemplul #3:

Soluţie:

Termenul liber al ecuației este negativ și, prin urmare, produsul rădăcinilor este un număr negativ. Acest lucru este posibil numai dacă una dintre rădăcini este negativă, iar cealaltă este pozitivă. Prin urmare, suma rădăcinilor este egală cu diferențele modulelor lor.

Să selectăm perechi de numere care dau în produs și a căror diferență este egală cu:

și: diferența lor este egală - nu se potrivește;

și: - neadecvat;

și: - neadecvat;

şi: - potrivite. Tot ce rămâne este să ne amintim că una dintre rădăcini este negativă. Deoarece suma lor trebuie să fie egală, rădăcina cu modulul mai mic trebuie să fie negativă: . Verificăm:

Răspuns:

Exemplul #4:

Rezolvați ecuația.

Soluţie:

Ecuația este dată, ceea ce înseamnă:

Termenul liber este negativ și, prin urmare, produsul rădăcinilor este negativ. Și acest lucru este posibil numai atunci când o rădăcină a ecuației este negativă, iar cealaltă este pozitivă.

Să selectăm perechi de numere al căror produs este egal și apoi să determinăm care rădăcini ar trebui să aibă semn negativ:

Evident, doar rădăcinile și sunt potrivite pentru prima condiție:

Răspuns:

Exemplul #5:

Rezolvați ecuația.

Soluţie:

Ecuația este dată, ceea ce înseamnă:

Suma rădăcinilor este negativă, ceea ce înseamnă că cel puțin una dintre rădăcini este negativă. Dar, deoarece produsul lor este pozitiv, înseamnă că ambele rădăcini au semnul minus.

Să selectăm perechi de numere al căror produs este egal cu:

Evident, rădăcinile sunt numerele și.

Răspuns:

De acord, este foarte convenabil să veniți cu rădăcini oral, în loc să numărați acest discriminant urât. Încercați să utilizați teorema lui Vieta cât mai des posibil.

Dar teorema lui Vieta este necesară pentru a facilita și accelera găsirea rădăcinilor. Pentru a beneficia de pe urma folosirii lui, trebuie să aduci acțiunile la automatitate. Și pentru asta, rezolvă încă cinci exemple. Dar nu înșela: nu poți folosi un discriminant! Doar teorema lui Vieta:

Soluții la sarcini pentru munca independentă:

Sarcina 1. ((x)^(2))-8x+12=0

Conform teoremei lui Vieta:

Ca de obicei, începem selecția cu piesa:

Nu este potrivit pentru că suma;

: suma este exact ceea ce ai nevoie.

Răspuns: ; .

Sarcina 2.

Și din nou teorema noastră preferată Vieta: suma trebuie să fie egală, iar produsul trebuie să fie egal.

Dar din moment ce nu trebuie să fie, dar, schimbăm semnele rădăcinilor: și (în total).

Răspuns: ; .

Sarcina 3.

Hmm... Unde este asta?

Trebuie să mutați toți termenii într-o singură parte:

Suma rădăcinilor este egală cu produsul.

Bine, oprește-te! Ecuația nu este dată. Dar teorema lui Vieta este aplicabilă numai în ecuațiile date. Deci mai întâi trebuie să dați o ecuație. Dacă nu poți conduce, renunță la această idee și rezolvă-o într-un alt mod (de exemplu, printr-un discriminant). Permiteți-mi să vă reamintesc că a da o ecuație pătratică înseamnă a egaliza coeficientul principal:

Grozav. Apoi suma rădăcinilor este egală cu și produsul.

Aici este la fel de ușor ca decojirea perelor să alegi: la urma urmei, este un număr prim (scuze pentru tautologie).

Răspuns: ; .

Sarcina 4.

Membrul liber este negativ. Ce e special la asta? Și adevărul este că rădăcinile vor avea semne diferite. Și acum, în timpul selecției, verificăm nu suma rădăcinilor, ci diferența dintre modulele lor: această diferență este egală, dar un produs.

Deci, rădăcinile sunt egale cu și, dar una dintre ele este minus. Teorema lui Vieta ne spune că suma rădăcinilor este egală cu al doilea coeficient cu semnul opus, adică. Aceasta înseamnă că rădăcina mai mică va avea un minus: și, din moment ce.

Răspuns: ; .

Sarcina 5.

Ce ar trebui să faci mai întâi? Așa este, dați ecuația:

Din nou: selectăm factorii numărului, iar diferența lor ar trebui să fie egală cu:

Rădăcinile sunt egale cu și, dar una dintre ele este minus. Care? Suma lor ar trebui să fie egală, ceea ce înseamnă că minusul va avea o rădăcină mai mare.

Răspuns: ; .

Lasă-mă să rezum:
  1. Teorema lui Vieta este folosită numai în ecuațiile pătratice date.
  2. Folosind teorema lui Vieta, puteți găsi rădăcinile prin selecție, oral.
  3. Dacă ecuația nu este dată sau nu se găsește o pereche adecvată de factori ai termenului liber, atunci nu există rădăcini întregi și trebuie să o rezolvați în alt mod (de exemplu, printr-un discriminant).

3. Metoda de selectare a unui pătrat complet

Dacă toți termenii care conțin necunoscutul sunt reprezentați sub formă de termeni din formule de înmulțire prescurtate - pătratul sumei sau al diferenței - atunci după înlocuirea variabilelor, ecuația poate fi prezentată sub forma unei ecuații pătratice incomplete de tipul.

De exemplu:

Exemplul 1:

Rezolvați ecuația: .

Soluţie:

Răspuns:

Exemplul 2:

Rezolvați ecuația: .

Soluţie:

Răspuns:

ÎN vedere generala transformarea va arata astfel:

Asta implică: .

Nu-ți aduce aminte de nimic? Acesta este un lucru discriminatoriu! Exact așa am obținut formula discriminantă.

ECUAȚII CADRATICE. SCURT DESPRE LUCRURILE PRINCIPALE

Ecuație pătratică- aceasta este o ecuație de formă, unde - necunoscutul, - coeficienții ecuației pătratice, - termenul liber.

Ecuație pătratică completă- o ecuație în care coeficienții nu sunt egali cu zero.

Ecuație pătratică redusă- o ecuaţie în care coeficientul, adică: .

Ecuație pătratică incompletă- o ecuație în care coeficientul și/sau termenul liber c sunt egali cu zero:

  • dacă coeficientul, ecuația arată astfel: ,
  • dacă există un termen liber, ecuația are forma: ,
  • dacă și, ecuația arată astfel: .

1. Algoritm pentru rezolvarea ecuațiilor pătratice incomplete

1.1. O ecuație pătratică incompletă de forma, unde:

1) Să exprimăm necunoscutul: ,

2) Verificați semnul expresiei:

  • dacă, atunci ecuația nu are soluții,
  • dacă, atunci ecuația are două rădăcini.

1.2. O ecuație pătratică incompletă de forma, unde:

1) Să scoatem factorul comun din paranteze: ,

2) Produsul este egal cu zero dacă cel puțin unul dintre factori este egal cu zero. Prin urmare, ecuația are două rădăcini:

1.3. O ecuație pătratică incompletă de forma, unde:

Această ecuație are întotdeauna o singură rădăcină: .

2. Algoritm pentru rezolvarea ecuaţiilor pătratice complete de forma unde

2.1. Soluție folosind discriminant

1) Să aducem ecuația la forma standard: ,

2) Să calculăm discriminantul folosind formula: , care indică numărul de rădăcini ale ecuației:

3) Aflați rădăcinile ecuației:

  • dacă, atunci ecuația are rădăcini, care se găsesc prin formula:
  • dacă, atunci ecuația are o rădăcină, care se găsește prin formula:
  • dacă, atunci ecuația nu are rădăcini.

2.2. Rezolvare folosind teorema lui Vieta

Suma rădăcinilor ecuației pătratice reduse (ecuația formei unde) este egală, iar produsul rădăcinilor este egal, i.e. , A.

2.3. Rezolvare prin metoda selectării unui pătrat complet

Dacă o ecuație pătratică de formă are rădăcini, atunci se poate scrie sub forma: .

Ei bine, subiectul s-a terminat. Dacă citești aceste rânduri, înseamnă că ești foarte cool.

Pentru că doar 5% dintre oameni sunt capabili să stăpânească ceva pe cont propriu. Și dacă citești până la capăt, atunci ești în acest 5%!

Acum cel mai important lucru.

Ați înțeles teoria pe această temă. Și, repet, asta... asta este pur și simplu super! Ești deja mai bun decât majoritate absolută colegii tăi.

Problema este că acest lucru poate să nu fie suficient...

Pentru ce?

Pentru finalizarea cu succes Examen de stat unificat, pentru admiterea la facultate cu buget redus și, CEL MAI IMPORTANT, pe viață.

Nu te voi convinge de nimic, o să spun doar un lucru...

Oamenii care au primit o educație bună, câștigă mult mai mult decât cei care nu l-au primit. Aceasta este statistica.

Dar acesta nu este principalul lucru.

Principalul lucru este că sunt MAI FERICIȚI (există astfel de studii). Poate pentru că mai multe oportunități se deschid în fața lor și viața devine mai strălucitoare? nu stiu...

Dar gandeste-te singur...

Ce este nevoie pentru a fi sigur că ești mai bun decât alții la examenul de stat unificat și, în cele din urmă, fii... mai fericit?

CĂGAȚI-VĂ MÂNĂ REZOLVÂND PROBLEME PE ACEST TEMA.

Nu ți se va cere teorie în timpul examenului.

Vei avea nevoie rezolva problemele in timp.

Și, dacă nu le-ați rezolvat (MULTE!), cu siguranță veți face o greșeală stupidă undeva sau pur și simplu nu veți avea timp.

Este ca în sport - trebuie să o repeți de multe ori pentru a câștiga cu siguranță.

Găsiți colecția oriunde doriți, neaparat cu solutii, analiza detaliata si decide, decide, decide!

Puteți folosi sarcinile noastre (opțional) și noi, bineînțeles, le recomandăm.

Pentru a folosi mai bine sarcinile noastre, trebuie să contribuiți la prelungirea duratei de viață a manualului YouClever pe care îl citiți în prezent.

Cum? Există două opțiuni:

  1. Deblocați toate sarcinile ascunse din acest articol - 299 rub.
  2. Deblocați accesul la toate sarcinile ascunse din toate cele 99 de articole ale manualului - 499 rub.

Da, avem 99 de astfel de articole în manualul nostru și accesul la toate sarcinile și toate textele ascunse din ele poate fi deschis imediat.

Accesul la toate sarcinile ascunse este asigurat pe toată durata de viață a site-ului.

În concluzie...

Dacă nu vă plac sarcinile noastre, găsiți altele. Doar nu te opri la teorie.

„Înțeles” și „Pot rezolva” sunt abilități complet diferite. Ai nevoie de amândouă.

Găsiți probleme și rezolvați-le!

O ecuație pătratică este o ecuație care arată ca ax 2 + dx + c = 0. Are sens a,cȘi Cu orice numere și A nu este egal cu zero.

Toate ecuațiile pătratice sunt împărțite în mai multe tipuri, și anume:

Ecuații cu o singură rădăcină.
-Ecuații cu două rădăcini diferite.
-Ecuații în care nu există rădăcini deloc.

Aceasta este ceea ce diferențiază ecuatii lineareîn care rădăcina este întotdeauna aceeași, din pătrat. Pentru a înțelege câte rădăcini sunt în expresie, aveți nevoie Discriminant al unei ecuații pătratice.

Să presupunem că ecuația noastră ax 2 + dx + c =0. Mijloace discriminant al unei ecuații pătratice -

D = b 2 - 4 ac

Și acest lucru trebuie amintit pentru totdeauna. Folosind această ecuație determinăm numărul de rădăcini din ecuația pătratică. Și o facem astfel:

Când D este mai mic decât zero, nu există rădăcini în ecuație.
- Când D este zero, există o singură rădăcină.
- Când D este mai mare decât zero, ecuația are două rădăcini.
Amintiți-vă că discriminantul arată câte rădăcini sunt în ecuație fără a schimba semnele.

Să luăm în considerare pentru claritate:

Trebuie să aflăm câte rădăcini sunt în această ecuație pătratică.

1) x 2 - 8x + 12 = 0
2)5x 2 + 3x + 7 = 0
3) x 2 -6x + 9 = 0

Introducem valorile în prima ecuație și găsim discriminantul.
a = 1, b = -8, c = 12
D = (-8) 2 - 4 * 1 * 12 = 64 - 48 = 16
Discriminantul are un semn plus, ceea ce înseamnă că există două rădăcini în această egalitate.

Facem același lucru cu a doua ecuație
a = 1, b = 3, c = 7
D = 3 2 - 4 * 5 * 7 = 9 - 140 = - 131
Valoarea este negativă, ceea ce înseamnă că nu există rădăcini în această egalitate.

Să extindem următoarea ecuație prin analogie.
a = 1, b = -6, c = 9
D = (-6) 2 - 4 * 1 * 9 = 36 - 36 = 0
ca o consecință, avem o singură rădăcină în ecuație.

Este important ca în fiecare ecuație să scriem coeficienții. Desigur, acesta nu este un proces foarte lung, dar ne-a ajutat să nu ne confuzăm și a prevenit apariția erorilor. Dacă rezolvi foarte des ecuații similare, vei putea efectua calculele mental și vei ști dinainte câte rădăcini are ecuația.

Să ne uităm la un alt exemplu:

1) x 2 - 2x - 3 = 0
2) 15 - 2x - x 2 = 0
3) x 2 + 12x + 36 = 0

Să-l așezăm pe primul
a = 1, b = -2, c = -3
D =(-2) 2 - 4 * 1 * (-3) = 16, care este mai mare decât zero, ceea ce înseamnă două rădăcini, să le derivăm
x 1 = 2+?16/2 * 1 = 3, x 2 = 2-?16/2 * 1 = -1.

Îl întindem pe al doilea
a = -1, b = -2, c = 15
D = (-2) 2 - 4 * 4 * (-1) * 15 = 64, care este mai mare decât zero și are, de asemenea, două rădăcini. Să le afișăm:
x 1 = 2+?64/2 * (-1) = -5, x 2 = 2-?64/2 *(-1) = 3.

Îl întindem pe al treilea
a = 1, b = 12, c = 36
D = 12 2 - 4 * 1 * 36 =0, care este egal cu zero și are o rădăcină
x = -12 + ?0/2 * 1 = -6.
Rezolvarea acestor ecuații nu este dificilă.

Dacă ni se oferă o ecuație pătratică incompletă. Ca

1x 2 + 9x = 0
2x 2 - 16 = 0

Aceste ecuații diferă de cele de mai sus, deoarece nu este completă, nu există o a treia valoare în ea. Dar, în ciuda acestui fapt, este mai simplă decât o ecuație pătratică completă și nu este nevoie să căutați un discriminant în ea.

Ce să faci când ai nevoie urgentă munca de absolvent sau un eseu, dar nu ai timp să-l scrii? Toate acestea și multe altele pot fi comandate pe site-ul Deepom.by (http://deeplom.by/) și obțineți cel mai mare scor.

Formule pentru rădăcinile unei ecuații pătratice. Sunt luate în considerare cazurile de rădăcini reale, multiple și complexe. Factorizarea unui trinom pătratic. Interpretare geometrică. Exemple de determinare a rădăcinilor și factoring.

Formule de bază

Luați în considerare ecuația pătratică:
(1) .
Rădăcinile unei ecuații pătratice(1) sunt determinate de formulele:
; .
Aceste formule pot fi combinate astfel:
.
Când rădăcinile unei ecuații pătratice sunt cunoscute, atunci un polinom de gradul doi poate fi reprezentat ca produs de factori (factorizați):
.

În plus, presupunem că - numere reale.
Sa luam in considerare discriminant al unei ecuații pătratice:
.
Dacă discriminantul este pozitiv, atunci ecuația pătratică (1) are două rădăcini reale diferite:
; .
Atunci factorizarea trinomului pătratic are forma:
.
Dacă discriminantul este egal cu zero, atunci ecuația pătratică (1) are două rădăcini reale multiple (egale):
.
Factorizare:
.
Dacă discriminantul este negativ, atunci ecuația pătratică (1) are două rădăcini conjugate complexe:
;
.
Iată unitatea imaginară, ;
și sunt părțile reale și imaginare ale rădăcinilor:
; .
Apoi

.

Interpretare grafică

Dacă construiești graficul unei funcții
,
care este o parabolă, atunci punctele de intersecție ale graficului cu axa vor fi rădăcinile ecuației
.
La , graficul intersectează axa x (axa) în două puncte.
Când , graficul atinge axa x la un moment dat.
Când , graficul nu traversează axa x.

Mai jos sunt exemple de astfel de grafice.

Formule utile legate de ecuația pătratică

(f.1) ;
(f.2) ;
(f.3) .

Derivarea formulei pentru rădăcinile unei ecuații pătratice

Efectuăm transformări și aplicăm formulele (f.1) și (f.3):




,
Unde
; .

Deci, am obținut formula pentru un polinom de gradul doi sub forma:
.
Aceasta arată că ecuația

efectuat la
Și .
Adică și sunt rădăcinile ecuației pătratice
.

Exemple de determinare a rădăcinilor unei ecuații pătratice

Exemplul 1


(1.1) .

Soluţie


.
Comparând cu ecuația noastră (1.1), găsim valorile coeficienților:
.
Găsim discriminantul:
.
Deoarece discriminantul este pozitiv, ecuația are două rădăcini reale:
;
;
.

De aici obținem factorizarea trinomului pătratic:

.

Graficul funcției y = 2 x 2 + 7 x + 3 intersectează axa x în două puncte.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Acesta traversează axa (axa) absciselor în două puncte:
Și .
Aceste puncte sunt rădăcinile ecuației inițiale (1.1).

Răspuns

;
;
.

Exemplul 2

Găsiți rădăcinile unei ecuații pătratice:
(2.1) .

Soluţie

Să scriem ecuația pătratică în formă generală:
.
Comparând cu ecuația inițială (2.1), găsim valorile coeficienților:
.
Găsim discriminantul:
.
Deoarece discriminantul este zero, ecuația are două rădăcini multiple (egale):
;
.

Atunci factorizarea trinomului are forma:
.

Graficul funcției y = x 2 - 4 x + 4 atinge axa x la un moment dat.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Atinge axa x (axa) la un moment dat:
.
Acest punct este rădăcina ecuației inițiale (2.1). Deoarece această rădăcină este factorizată de două ori:
,
atunci o astfel de rădăcină se numește de obicei multiplu. Adică, ei cred că există două rădăcini egale:
.

Răspuns

;
.

Exemplul 3

Găsiți rădăcinile unei ecuații pătratice:
(3.1) .

Soluţie

Să scriem ecuația pătratică în formă generală:
(1) .
Să rescriem ecuația inițială (3.1):
.
Comparând cu (1), găsim valorile coeficienților:
.
Găsim discriminantul:
.
Discriminantul este negativ, . Prin urmare, nu există rădăcini reale.

Puteți găsi rădăcini complexe:
;
;
.

Apoi


.

Graficul funcției nu traversează axa x. Nu există rădăcini reale.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Nu intersectează axa x (axa). Prin urmare, nu există rădăcini reale.

Răspuns

Nu există rădăcini reale. Rădăcini complexe:
;
;
.

Problemele cu ecuații cuadratice sunt, de asemenea, studiate în curiculumul scolarși în universități. Ele înseamnă ecuații de forma a*x^2 + b*x + c = 0, unde X- variabilă, a, b, c – constante; A<>0 . Sarcina este de a găsi rădăcinile ecuației.

Sensul geometric al ecuației pătratice

Graficul unei funcții care este reprezentată printr-o ecuație pătratică este o parabolă. Soluțiile (rădăcinile) unei ecuații pătratice sunt punctele de intersecție ale parabolei cu axa absciselor (x). Rezultă că există trei cazuri posibile:
1) parabola nu are puncte de intersecție cu axa absciselor. Aceasta înseamnă că se află în planul superior cu ramurile în sus sau în partea de jos cu ramurile în jos. În astfel de cazuri, ecuația pătratică nu are rădăcini reale (are două rădăcini complexe).

2) parabola are un punct de intersecție cu axa Ox. Un astfel de punct se numește vârful parabolei, iar ecuația pătratică de la el își capătă valoarea minimă sau maximă. În acest caz, ecuația pătratică are o rădăcină reală (sau două rădăcini identice).

3) Ultimul caz este mai interesant în practică - există două puncte de intersecție ale parabolei cu axa absciselor. Aceasta înseamnă că există două rădăcini reale ale ecuației.

Pe baza analizei coeficienților puterilor variabilelor se pot trage concluzii interesante despre amplasarea parabolei.

1) Dacă coeficientul a este mai mare decât zero, atunci ramurile parabolei sunt îndreptate în sus; dacă este negativ, ramurile parabolei sunt îndreptate în jos.

2) Dacă coeficientul b este mai mare decât zero, atunci vârful parabolei se află în semiplanul stâng, dacă ia o valoare negativă, atunci în dreapta.

Derivarea formulei de rezolvare a unei ecuații pătratice

Să transferăm constanta din ecuația pătratică

pentru semnul egal, obținem expresia

Înmulțiți ambele părți cu 4a

Pentru a obține un pătrat complet în stânga, adăugați b^2 pe ambele părți și efectuați transformarea

De aici găsim

Formula pentru discriminantul și rădăcinile unei ecuații pătratice

Discriminantul este valoarea expresiei radicalului.Dacă este pozitivă, atunci ecuația are două rădăcini reale, calculate prin formula Când discriminantul este zero, ecuația pătratică are o soluție (două rădăcini care coincid), care poate fi obținută cu ușurință din formula de mai sus pentru D = 0. Când discriminantul este negativ, ecuația nu are rădăcini reale. Cu toate acestea, soluțiile ecuației pătratice se găsesc în plan complex, iar valoarea lor este calculată folosind formula

teorema lui Vieta

Să considerăm două rădăcini ale unei ecuații pătratice și să construim o ecuație pătratică pe baza lor.Teorema lui Vieta însăși decurge cu ușurință din notația: dacă avem o ecuație pătratică de forma atunci suma rădăcinilor sale este egală cu coeficientul p luat cu semnul opus, iar produsul rădăcinilor ecuației este egal cu termenul liber q. Reprezentarea formulată a celor de mai sus va arăta ca Dacă într-o ecuație clasică constanta a este diferită de zero, atunci trebuie să împărțiți întreaga ecuație cu ea și apoi să aplicați teorema lui Vieta.

Schema de factorizare a ecuației pătratice

Să fie stabilită sarcina: factorizați o ecuație pătratică. Pentru a face acest lucru, mai întâi rezolvăm ecuația (găsește rădăcinile). Apoi, înlocuim rădăcinile găsite în formula de expansiune pentru ecuația pătratică, ceea ce va rezolva problema.

Probleme cu ecuații cuadratice

Sarcina 1. Găsiți rădăcinile unei ecuații pătratice

x^2-26x+120=0 .

Rezolvare: Notați coeficienții și înlocuiți-i în formula discriminantă

Rădăcina de valoare dată este egal cu 14, este ușor de găsit cu un calculator, sau amintiți-vă cu utilizare frecventă, totuși, pentru comoditate, la sfârșitul articolului vă voi oferi o listă de pătrate de numere care pot fi adesea întâlnite în astfel de probleme.
Înlocuim valoarea găsită în formula rădăcină

și primim

Sarcina 2. Rezolvați ecuația

2x 2 +x-3=0.

Rezolvare: Avem o ecuație pătratică completă, scriem coeficienții și găsim discriminantul


Folosind formule cunoscute găsim rădăcinile ecuației pătratice

Sarcina 3. Rezolvați ecuația

9x 2 -12x+4=0.

Rezolvare: Avem o ecuație pătratică completă. Determinarea discriminantului

Avem un caz în care rădăcinile coincid. Găsiți valorile rădăcinilor folosind formula

Sarcina 4. Rezolvați ecuația

x^2+x-6=0 .

Soluție: În cazurile în care există coeficienți mici pentru x, este recomandabil să aplicați teorema lui Vieta. Prin condiția sa obținem două ecuații

Din a doua condiție constatăm că produsul trebuie să fie egal cu -6. Aceasta înseamnă că una dintre rădăcini este negativă. Avem următoarea pereche posibilă de soluții (-3;2), (3;-2) . Ținând cont de prima condiție, respingem a doua pereche de soluții.
Rădăcinile ecuației sunt egale

Problema 5. Aflați lungimile laturilor unui dreptunghi dacă perimetrul lui este de 18 cm și aria lui este de 77 cm 2.

Rezolvare: Jumătate din perimetrul unui dreptunghi este egal cu suma laturilor sale adiacente. Să notăm x ca latura mai mare, apoi 18-x este latura sa mai mică. Aria dreptunghiului este egală cu produsul acestor lungimi:
x(18-x)=77;
sau
x 2 -18x+77=0.
Să găsim discriminantul ecuației

Calcularea rădăcinilor ecuației

Dacă x=11, Acea 18's=7, opusul este de asemenea adevărat (dacă x=7, atunci 21's=9).

Problema 6. Factorizați ecuația pătratică 10x 2 -11x+3=0.

Soluție: Să calculăm rădăcinile ecuației, pentru a face acest lucru găsim discriminantul

Înlocuim valoarea găsită în formula rădăcină și calculăm

Aplicam formula pentru descompunerea unei ecuatii patratice prin radacini

Deschizând paranteze obținem o identitate.

Ecuație pătratică cu parametru

Exemplul 1. La ce valori ale parametrilor A , ecuația (a-3)x 2 + (3-a)x-1/4=0 are o rădăcină?

Rezolvare: Prin înlocuirea directă a valorii a=3 vedem că nu are soluție. În continuare, vom folosi faptul că, cu un discriminant zero, ecuația are o rădăcină a multiplicității 2. Să scriem discriminantul

Să-l simplificăm și să-l echivalăm cu zero

Am obținut o ecuație pătratică în raport cu parametrul a, a cărei soluție poate fi obținută cu ușurință folosind teorema lui Vieta. Suma rădăcinilor este 7, iar produsul lor este 12. Prin simpla căutare stabilim că numerele 3,4 vor fi rădăcinile ecuației. Deoarece am respins deja soluția a=3 la începutul calculelor, singura corectă va fi - a=4. Astfel, pentru a=4 ecuația are o rădăcină.

Exemplul 2. La ce valori ale parametrilor A , ecuația a(a+3)x^2+(2a+6)x-3a-9=0 are mai multe rădăcini?

Soluție: Să luăm mai întâi în considerare punctele singulare, acestea vor fi valorile a=0 și a=-3. Când a=0, ecuația va fi simplificată la forma 6x-9=0; x=3/2 și va fi o rădăcină. Pentru a= -3 obținem identitatea 0=0.
Să calculăm discriminantul

și găsiți valoarea lui a la care este pozitivă

Din prima condiție obținem a>3. Pentru al doilea, găsim discriminantul și rădăcinile ecuației


Să definim intervalele în care ia funcția valori pozitive. Inlocuind punctul a=0 obtinem 3>0 . Deci, în afara intervalului (-3;1/3) funcția este negativă. Nu uitați ideea a=0, care ar trebui exclus deoarece ecuația originală are o rădăcină în ea.
Ca rezultat, obținem două intervale care satisfac condițiile problemei

Vor exista multe sarcini similare în practică, încercați să vă dați seama singur sarcinile și nu uitați să țineți cont de condițiile care se exclud reciproc. Studiați bine formulele de rezolvare a ecuațiilor pătratice; acestea sunt adesea necesare în calcule în diverse probleme și științe.

Sper că, după ce ați studiat acest articol, veți învăța cum să găsiți rădăcinile unei ecuații pătratice complete.

Folosind discriminantul, se rezolvă doar ecuații pătratice complete; pentru a rezolva ecuații pătratice incomplete se folosesc alte metode, pe care le veți găsi în articolul „Rezolvarea ecuațiilor pătratice incomplete”.

Ce ecuații pătratice se numesc complete? Acest ecuații de forma ax 2 + b x + c = 0, unde coeficienții a, b și c nu sunt egali cu zero. Deci, pentru a rezolva o ecuație pătratică completă, trebuie să calculăm discriminantul D.

D = b 2 – 4ac.

În funcție de valoarea discriminantului, vom nota răspunsul.

Dacă discriminantul este un număr negativ (D< 0),то корней нет.

Dacă discriminantul este zero, atunci x = (-b)/2a. Când discriminantul este un număr pozitiv (D > 0),

atunci x 1 = (-b - √D)/2a și x 2 = (-b + √D)/2a.

De exemplu. Rezolvați ecuația x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Raspuns: 2.

Rezolvați ecuația 2 x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Răspuns: fără rădăcini.

Rezolvați ecuația 2 x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3,5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Răspuns: – 3,5; 1.

Deci, să ne imaginăm soluția ecuațiilor pătratice complete folosind diagrama din figura 1.

Folosind aceste formule puteți rezolva orice ecuație pătratică completă. Trebuie doar să fii atent ecuația a fost scrisă ca polinom vedere standard

A x 2 + bx + c, altfel poți să faci o greșeală. De exemplu, scriind ecuația x + 3 + 2x 2 = 0, puteți decide în mod eronat că

a = 1, b = 3 și c = 2. Atunci

D = 3 2 – 4 1 2 = 1 și atunci ecuația are două rădăcini. Și acest lucru nu este adevărat. (Vezi soluția la exemplul 2 de mai sus).

Prin urmare, dacă ecuația nu este scrisă ca un polinom al formei standard, mai întâi trebuie scrisă ecuația pătratică completă ca un polinom al formei standard (monomul cu cel mai mare exponent ar trebui să fie primul, adică A x 2 , apoi cu mai putin bxși apoi un membru liber Cu.

Când rezolvați ecuația pătratică redusă și o ecuație pătratică cu un coeficient par în al doilea termen, puteți utiliza alte formule. Să facem cunoștință cu aceste formule. Dacă într-o ecuație pătratică completă, al doilea termen are un coeficient par (b = 2k), atunci puteți rezolva ecuația folosind formulele prezentate în diagrama din figura 2.

O ecuație pătratică completă se numește redusă dacă coeficientul la x 2 este egală cu unu și ecuația ia forma x 2 + px + q = 0. O astfel de ecuație poate fi dată pentru rezolvare sau poate fi obținută prin împărțirea tuturor coeficienților ecuației la coeficient A, stând la x 2 .

Figura 3 prezintă o diagramă pentru rezolvarea pătratului redus
ecuații. Să ne uităm la un exemplu de aplicare a formulelor discutate în acest articol.

Exemplu. Rezolvați ecuația

3x 2 + 6x – 6 = 0.

Să rezolvăm această ecuație folosind formulele prezentate în diagrama din figura 1.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Răspuns: –1 – √3; –1 + √3

Puteți observa că coeficientul lui x din această ecuație este un număr par, adică b = 6 sau b = 2k, de unde k = 3. Atunci să încercăm să rezolvăm ecuația folosind formulele prezentate în diagrama figurii D. 1 = 3 2 – 3 · (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Răspuns: –1 – √3; –1 + √3. Observând că toți coeficienții din această ecuație pătratică sunt divizibili cu 3 și efectuând împărțirea, obținem ecuația pătratică redusă x 2 + 2x – 2 = 0 Rezolvați această ecuație folosind formulele pentru ecuația pătratică redusă.
ecuații figura 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Răspuns: –1 – √3; –1 + √3.

După cum puteți vedea, atunci când rezolvăm această ecuație folosind formule diferite, am primit același răspuns. Prin urmare, după ce ați stăpânit temeinic formulele prezentate în diagrama din figura 1, veți putea întotdeauna să rezolvați orice ecuație pătratică completă.

site-ul web, atunci când copiați materialul integral sau parțial, este necesar un link către sursă.

Acțiune