Cum se rezolvă ecuații cu cosinus. Ecuații trigonometrice - formule, soluții, exemple. Reducere la o ecuație omogenă

Menținerea confidențialității dvs. este importantă pentru noi. Din acest motiv, am dezvoltat o Politică de confidențialitate care descrie modul în care folosim și stocăm informațiile dumneavoastră. Vă rugăm să examinați practicile noastre de confidențialitate și să ne comunicați dacă aveți întrebări.

Colectarea și utilizarea informațiilor personale

Informațiile personale se referă la date care pot fi folosite pentru a identifica sau contacta o anumită persoană.

Vi se poate cere să furnizați informațiile dumneavoastră personale în orice moment când ne contactați.

Mai jos sunt câteva exemple de tipuri de informații personale pe care le putem colecta și cum putem folosi aceste informații.

Ce informații personale colectăm:

  • Când trimiteți o cerere pe site, este posibil să colectăm diverse informații, inclusiv numele, numărul de telefon, adresa dvs E-mail etc.

Cum folosim informațiile dumneavoastră personale:

  • Colectat de noi Informații personale ne permite să vă contactăm și să vă informăm despre oferte unice, promoții și alte evenimente și evenimente viitoare.
  • Din când în când, putem folosi informațiile dumneavoastră personale pentru a trimite notificări și comunicări importante.
  • De asemenea, putem folosi informații personale în scopuri interne, cum ar fi efectuarea de audituri, analize de date și diverse cercetări pentru a îmbunătăți serviciile pe care le oferim și pentru a vă oferi recomandări cu privire la serviciile noastre.
  • Dacă participați la o tragere la sorți, la un concurs sau la o promoție similară, este posibil să folosim informațiile pe care le furnizați pentru a administra astfel de programe.

Dezvăluirea informațiilor către terți

Nu dezvăluim informațiile primite de la dumneavoastră către terți.

Excepții:

  • Daca este necesar, in conditiile legii, procedura judiciara, V proces, și/sau pe baza cererilor publice sau a solicitărilor de la agentii guvernamentale pe teritoriul Federației Ruse - dezvăluie informațiile tale personale. De asemenea, putem dezvălui informații despre dumneavoastră dacă stabilim că o astfel de dezvăluire este necesară sau adecvată pentru securitate, aplicarea legii sau alte scopuri de importanță publică.
  • În cazul unei reorganizări, fuziuni sau vânzări, este posibil să transferăm informațiile personale pe care le colectăm terței părți succesoare aplicabile.

Protecția informațiilor personale

Luăm măsuri de precauție - inclusiv administrative, tehnice și fizice - pentru a vă proteja informațiile personale împotriva pierderii, furtului și utilizării greșite, precum și împotriva accesului, dezvăluirii, modificării și distrugerii neautorizate.

Respectarea vieții private la nivelul companiei

Pentru a ne asigura că informațiile dumneavoastră personale sunt securizate, comunicăm angajaților noștri standarde de confidențialitate și securitate și aplicăm strict practicile de confidențialitate.

Când rezolvi multe probleme matematice, în special cele care apar înainte de clasa a 10-a, este clar definită ordinea acțiunilor efectuate care vor duce la obiectiv. Astfel de probleme includ, de exemplu, ecuații liniare și pătratice, inegalități liniare și pătratice, ecuații fracționale și ecuații care se reduc la cele pătratice. Principiul rezolvării cu succes a fiecăreia dintre problemele menționate este următorul: trebuie să stabiliți ce tip de problemă rezolvați, să vă amintiți succesiunea necesară de acțiuni care vor duce la rezultatul dorit, adică. răspundeți și urmați acești pași.

Este evident că succesul sau eșecul în rezolvarea unei anumite probleme depinde în principal de cât de corect este determinat tipul de ecuație care se rezolvă, cât de corect este reprodusă succesiunea tuturor etapelor rezolvării acesteia. Desigur, în acest caz este necesar să aveți abilitățile de a efectua transformări și calcule identice.

Situația este diferită cu ecuații trigonometrice. Nu este deloc greu de stabilit faptul că ecuația este trigonometrică. Apar dificultăți la determinarea succesiunii de acțiuni care ar duce la răspunsul corect.

De aspect ecuație, uneori este dificil să-i determine tipul. Și fără a cunoaște tipul de ecuație, este aproape imposibil să o alegeți pe cea potrivită din câteva zeci de formule trigonometrice.

Pentru a rezolva o ecuație trigonometrică, trebuie să încercați:

1. aduceți toate funcțiile incluse în ecuație la „aceleași unghiuri”;
2. aduceți ecuația la „funcții identice”;
3. factorizează partea stângă a ecuației etc.

Sa luam in considerare metode de bază pentru rezolvarea ecuațiilor trigonometrice.

I. Reducerea la cele mai simple ecuații trigonometrice

Diagrama soluției

Pasul 1. Exprimați o funcție trigonometrică în termeni de componente cunoscute.

Pasul 2. Găsiți argumentul funcției folosind formulele:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = arctan a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Pasul 3. Găsiți variabila necunoscută.

Exemplu.

2 cos(3x – π/4) = -√2.

Soluţie.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Răspuns: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Înlocuire variabilă

Diagrama soluției

Pasul 1. Reduceți ecuația la forma algebrică relativ la una din funcţiile trigonometrice.

Pasul 2. Notați funcția rezultată prin variabila t (dacă este necesar, introduceți restricții asupra t).

Pasul 3. Scrieți și rezolvați ecuația algebrică rezultată.

Pasul 4. Faceți o înlocuire inversă.

Pasul 5. Rezolvați cea mai simplă ecuație trigonometrică.

Exemplu.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Soluţie.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Fie sin (x/2) = t, unde |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 sau e = -3/2, nu satisface condiția |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Răspuns: x = π + 4πn, n Є Z.

III. Metoda de reducere a ordinii ecuațiilor

Diagrama soluției

Pasul 1.Înlocuiți această ecuație cu una liniară, folosind formula de reducere a gradului:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Pasul 2. Rezolvați ecuația rezultată folosind metodele I și II.

Exemplu.

cos 2x + cos 2 x = 5/4.

Soluţie.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Răspuns: x = ±π/6 + πn, n Є Z.

IV. Ecuații omogene

Diagrama soluției

Pasul 1. Reduceți această ecuație la forma

a) a sin x + b cos x = 0 (ecuația omogenă de gradul I)

sau la vedere

b) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (ecuația omogenă de gradul doi).

Pasul 2.Împărțiți ambele părți ale ecuației la

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

și obțineți ecuația pentru tan x:

a) a tan x + b = 0;

b) a tan 2 x + b arctan x + c = 0.

Pasul 3. Rezolvați ecuația folosind metode cunoscute.

Exemplu.

5sin 2 x + 3sin x cos x – 4 = 0.

Soluţie.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Fie tg x = t, atunci

t 2 + 3t – 4 = 0;

t = 1 sau t = -4, ceea ce înseamnă

tg x = 1 sau tg x = -4.

Din prima ecuație x = π/4 + πn, n Є Z; din a doua ecuaţie x = -arctg 4 + πk, k Є Z.

Răspuns: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Metoda de transformare a unei ecuații folosind formule trigonometrice

Diagrama soluției

Pasul 1. Folosind tot felul de formule trigonometrice, reduceți această ecuație la o ecuație rezolvată prin metodele I, II, III, IV.

Pasul 2. Rezolvați ecuația rezultată folosind metode cunoscute.

Exemplu.

sin x + sin 2x + sin 3x = 0.

Soluţie.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 sau 2cos x + 1 = 0;

Din prima ecuație 2x = π/2 + πn, n Є Z; din a doua ecuație cos x = -1/2.

Avem x = π/4 + πn/2, n Є Z; din a doua ecuație x = ±(π – π/3) + 2πk, k Є Z.

Ca rezultat, x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Răspuns: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Abilități și abilități de rezolvare ecuații trigonometrice sunt foarte important, dezvoltarea lor necesită un efort semnificativ, atât din partea elevului, cât și din partea profesorului.

Multe probleme de stereometrie, fizică etc. sunt asociate cu rezolvarea ecuațiilor trigonometrice.Procesul de rezolvare a unor astfel de probleme întruchipează multe dintre cunoștințele și abilitățile care sunt dobândite prin studierea elementelor de trigonometrie.

Ecuațiile trigonometrice iau loc importantîn procesul de predare a matematicii şi de dezvoltare a personalităţii în general.

Mai ai întrebări? Nu știi cum să rezolvi ecuații trigonometrice?
Pentru a obține ajutor de la un tutor, înregistrați-vă.
Prima lecție este gratuită!

site-ul web, atunci când copiați materialul integral sau parțial, este necesar un link către sursă.

Ecuații trigonometrice .

Cele mai simple ecuații trigonometrice .

Metode de rezolvare a ecuațiilor trigonometrice.

Ecuații trigonometrice. O ecuație care conține o necunoscută sub semnul funcției trigonometrice se numește trigonometric.

Cele mai simple ecuații trigonometrice.



Metode de rezolvare a ecuațiilor trigonometrice. Rezolvarea unei ecuații trigonometrice constă în două etape: transformarea ecuației ca sa fie cel mai simplu tip (vezi mai sus) și soluţiecel mai simplu rezultat ecuație trigonometrică. Sunt șapte metode de bază pentru rezolvarea ecuațiilor trigonometrice.

1. Metoda algebrică. Această metodă ne este bine cunoscută din algebră.

(metoda de înlocuire și înlocuire a variabilelor).

2. Factorizarea. Să ne uităm la această metodă cu exemple.

Exemplul 1. Rezolvați ecuația: păcat X+cos X = 1 .

Soluție. Să mutăm toți termenii ecuației la stânga:

Păcat X+cos X – 1 = 0 ,

Să transformăm și să factorizăm expresia în

Partea stângă a ecuației:

Exemplul 2. Rezolvați ecuația: cos 2 X+ păcat X cos X = 1.

Rezolvare: cos 2 X+ păcat X cos X păcatul 2 X– cos 2 X = 0 ,

Păcat X cos X– păcatul 2 X = 0 ,

Păcat X· (cos X– păcat X ) = 0 ,

Exemplul 3. Rezolvați ecuația: cos 2 X-cos 8 X+ cos 6 X = 1.

Rezolvare: cos 2 X+ cos 6 X= 1 + cos 8 X,

2 cos 4 X cos 2 X= 2cos² 4 X ,

Cos 4 X · (cos 2 X– cos 4 X) = 0 ,

Cos 4 X · 2 păcat 3 X păcat X = 0 ,

1). cos 4 X= 0, 2). păcatul 3 X= 0, 3). păcat X = 0 ,

3.

Duce la ecuație omogenă. Ecuația numit omogen din in ceea ce priveste păcatȘi cos , Dacă totul termeni de acelaşi grad relativ la păcatȘi cos acelasi unghi. Pentru a rezolva o ecuație omogenă, aveți nevoie de:

A) mutați toți membrii săi în partea stângă;

b) scoateți toți factorii comuni dintre paranteze;

V) egalează toți factorii și parantezele cu zero;

G) parantezele egale cu zero dau ecuație omogenă de grad mai mic, care ar trebui împărțită în

cos(sau păcat) în gradul superior;

d) rezolvați ecuația algebrică rezultată în raport cubronzat .

EXEMPLU Rezolvați ecuația: 3 păcat 2 X+ 4 păcat X cos X+ 5cos 2 X = 2.

Rezolvare: 3sin 2 X+ 4 păcat X cos X+ 5 cos 2 X= 2sin 2 X+ 2cos 2 X ,

Păcatul 2 X+ 4 păcat X cos X+ 3 cos 2 X = 0 ,

bronzat 2 X+ 4 bronz X + 3 = 0 , de aici y 2 + 4y +3 = 0 ,

Rădăcinile acestei ecuații sunt:y 1 = - 1, y 2 = - 3, prin urmare

1) bronzat X= –1, 2) tan X = –3,

4. Trecerea la jumătate de unghi. Să ne uităm la această metodă folosind un exemplu:

EXEMPLU Rezolvați ecuația: 3 păcat X– 5 cos X = 7.

Rezolvare: 6 sin ( X/ 2) cos ( X/ 2) – 5 cos² ( X/ 2) + 5 sin² ( X/ 2) =

7 sin² ( X/ 2) + 7 cos² ( X/ 2) ,

2 sin² ( X/ 2) – 6 sin ( X/ 2) cos ( X/ 2) + 12 cos² ( X/ 2) = 0 ,

bronz²( X/ 2) – 3 bronz ( X/ 2) + 6 = 0 ,

. . . . . . . . . .

5. Introducerea unui unghi auxiliar. Luați în considerare o ecuație de formă:

A păcat X + b cos X = c ,

Unde A, b, c– coeficienți;X– necunoscut.

Acum coeficienții ecuației au proprietățile sinusului și cosinusului, și anume: modulul (valoarea absolută) al fiecăruia

Conceptul de rezolvare a ecuațiilor trigonometrice.

  • Pentru a rezolva o ecuație trigonometrică, convertiți-o într-una sau mai multe ecuații trigonometrice de bază. Rezolvarea unei ecuații trigonometrice se reduce în cele din urmă la rezolvarea celor patru ecuații trigonometrice de bază.
  • Rezolvarea ecuațiilor trigonometrice de bază.

    • Există 4 tipuri de ecuații trigonometrice de bază:
    • sin x = a; cos x = a
    • tan x = a; ctg x = a
    • Rezolvarea ecuațiilor trigonometrice de bază implică examinarea diferitelor poziții x pe cercul unității, precum și utilizarea unui tabel de conversie (sau calculator).
    • Exemplul 1. sin x = 0,866. Folosind un tabel de conversie (sau un calculator) veți obține răspunsul: x = π/3. Cercul unitar dă un alt răspuns: 2π/3. Rețineți: toate funcțiile trigonometrice sunt periodice, adică valorile lor se repetă. De exemplu, periodicitatea lui sin x și cos x este 2πn, iar periodicitatea lui tg x și ctg x este πn. Prin urmare, răspunsul este scris după cum urmează:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Exemplul 2. cos x = -1/2. Folosind un tabel de conversie (sau un calculator) veți obține răspunsul: x = 2π/3. Cercul unitar dă un alt răspuns: -2π/3.
    • x1 = 2π/3 + 2π; x2 = -2π/3 + 2π.
    • Exemplul 3. tg (x - π/4) = 0.
    • Răspuns: x = π/4 + πn.
    • Exemplul 4. ctg 2x = 1.732.
    • Răspuns: x = π/12 + πn.
  • Transformări utilizate în rezolvarea ecuațiilor trigonometrice.

    • Pentru transformarea ecuațiilor trigonometrice se folosesc transformări algebrice (factorizare, reducere membri omogene etc.) și identități trigonometrice.
    • Exemplul 5: Folosind identități trigonometrice, ecuația sin x + sin 2x + sin 3x = 0 este convertită în ecuația 4cos x*sin (3x/2)*cos (x/2) = 0. Astfel, următoarele ecuații trigonometrice de bază trebuie rezolvate: cos x = 0; sin(3x/2) = 0; cos(x/2) = 0.
    • Găsirea unghiurilor prin valori cunoscute funcții.

      • Înainte de a învăța cum să rezolvi ecuațiile trigonometrice, trebuie să înveți cum să găsești unghiuri folosind valorile funcțiilor cunoscute. Acest lucru se poate face folosind un tabel de conversie sau un calculator.
      • Exemplu: cos x = 0,732. Calculatorul va da răspunsul x = 42,95 grade. Cercul unitar va da unghiuri suplimentare, al căror cosinus este, de asemenea, 0,732.
    • Pune deoparte soluția pe cercul unității.

      • Puteți reprezenta soluțiile unei ecuații trigonometrice pe cercul unității. Soluțiile unei ecuații trigonometrice pe cercul unitar sunt vârfurile unui poligon regulat.
      • Exemplu: Soluțiile x = π/3 + πn/2 pe cercul unitar reprezintă vârfurile pătratului.
      • Exemplu: Soluțiile x = π/4 + πn/3 pe cercul unitar reprezintă vârfurile unui hexagon regulat.
    • Metode de rezolvare a ecuațiilor trigonometrice.

      • Dacă o ecuație trigonometrică dată conține o singură funcție trigonometrică, rezolvați acea ecuație ca o ecuație trigonometrică de bază. Dacă o anumită ecuație include două sau mai multe funcții trigonometrice, atunci există 2 metode de rezolvare a unei astfel de ecuații (în funcție de posibilitatea transformării acesteia).
        • Metoda 1.
      • Transformați această ecuație într-o ecuație de forma: f(x)*g(x)*h(x) = 0, unde f(x), g(x), h(x) sunt ecuațiile trigonometrice de bază.
      • Exemplul 6. 2cos x + sin 2x = 0. (0< x < 2π)
      • Soluţie. Folosind formula unghiului dublu sin 2x = 2*sin x*cos x, înlocuiți sin 2x.
      • 2cos x + 2*sin x*cos x = 2cos x*(sin x + 1) = 0. Rezolvați acum cele două ecuații trigonometrice de bază: cos x = 0 și (sin x + 1) = 0.
      • Exemplul 7. cos x + cos 2x + cos 3x = 0. (0< x < 2π)
      • Rezolvare: Folosind identități trigonometrice, transformați această ecuație într-o ecuație de forma: cos 2x(2cos x + 1) = 0. Rezolvați acum cele două ecuații trigonometrice de bază: cos 2x = 0 și (2cos x + 1) = 0.
      • Exemplul 8. sin x - sin 3x = cos 2x. (0< x < 2π)
      • Rezolvare: Folosind identități trigonometrice, transformați această ecuație într-o ecuație de forma: -cos 2x*(2sin x + 1) = 0. Rezolvați acum cele două ecuații trigonometrice de bază: cos 2x = 0 și (2sin x + 1) = 0 .
        • Metoda 2.
      • Convertiți ecuația trigonometrică dată într-o ecuație care conține o singură funcție trigonometrică. Apoi înlocuiți această funcție trigonometrică cu una necunoscută, de exemplu, t (sin x = t; cos x = t; cos 2x = t, tan x = t; tg (x/2) = t etc.).
      • Exemplul 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0< x < 2π).
      • Soluţie. În această ecuație, înlocuiți (cos^2 x) cu (1 - sin^2 x) (în funcție de identitate). Ecuația transformată este:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Înlocuiți sin x cu t. Acum ecuația este: 5t^2 - 4t - 9 = 0. Aceasta este ecuație pătratică, având două rădăcini: t1 = -1 și t2 = 9/5. A doua rădăcină t2 nu satisface domeniul de funcții (-1< sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Exemplul 10. tg x + 2 tg^2 x = ctg x + 2
      • Soluţie. Înlocuiți tg x cu t. Rescrieți ecuația inițială după cum urmează: (2t + 1)(t^2 - 1) = 0. Acum găsiți t și apoi găsiți x pentru t = tan x.
  • Cele mai simple ecuații trigonometrice se rezolvă, de regulă, folosind formule. Permiteți-mi să vă reamintesc că cele mai simple ecuații trigonometrice sunt:

    sinx = a

    cosx = a

    tgx = a

    ctgx = a

    x este unghiul care trebuie găsit,
    a este orice număr.

    Și iată care sunt formulele cu care puteți nota imediat soluțiile acestor ecuații simple.

    Pentru sinus:


    Pentru cosinus:

    x = ± arccos a + 2π n, n ∈ Z


    Pentru tangentă:

    x = arctan a + π n, n ∈ Z


    Pentru cotangentă:

    x = arcctg a + π n, n ∈ Z

    De fapt, aceasta este partea teoretică a rezolvării celor mai simple ecuații trigonometrice. Mai mult, totul!) Nimic. Cu toate acestea, numărul de erori pe acest subiect este pur și simplu în afara graficelor. Mai ales dacă exemplul se abate ușor de la șablon. De ce?

    Da, pentru că mulți oameni notează aceste scrisori, fără să le înțelegem deloc sensul! El scrie cu prudență, ca să nu se întâmple ceva...) Acest lucru trebuie rezolvat. Trigonometrie pentru oameni sau oameni pentru trigonometrie, până la urmă!?)

    Să ne dăm seama?

    Un unghi va fi egal cu arccos a, al doilea: -arccos a.

    Și întotdeauna va funcționa așa. Pentru orice A.

    Dacă nu mă credeți, treceți mouse-ul peste imagine sau atingeți fotografia de pe tabletă.) Am schimbat numărul A la ceva negativ. Oricum, avem un colț arccos a, al doilea: -arccos a.

    Prin urmare, răspunsul poate fi întotdeauna scris ca două serii de rădăcini:

    x 1 = arccos a + 2π n, n ∈ Z

    x 2 = - arccos a + 2π n, n ∈ Z

    Să combinăm aceste două serii într-una singură:

    x= ± arccos a + 2π n, n ∈ Z

    Și asta e tot. Am obținut o formulă generală pentru rezolvarea celei mai simple ecuații trigonometrice cu cosinus.

    Dacă înțelegi că acesta nu este un fel de înțelepciune supraștiințifică, dar doar o versiune scurtă a două serii de răspunsuri, De asemenea, veți putea face față sarcinilor „C”. Cu inegalități, cu selectarea rădăcinilor dintr-un interval dat... Acolo răspunsul cu plus/minus nu merge. Dar dacă tratați răspunsul într-o manieră de afaceri și îl descompuneți în două răspunsuri separate, totul va fi rezolvat.) De fapt, de aceea îl analizăm. Ce, cum și unde.

    În cea mai simplă ecuație trigonometrică

    sinx = a

    obținem și două serii de rădăcini. Mereu. Și aceste două serii pot fi și înregistrate într-o singură linie. Doar această linie va fi mai complicată:

    x = (-1) n arcsin a + π n, n ∈ Z

    Dar esența rămâne aceeași. Matematicienii au conceput pur și simplu o formulă pentru a face una în loc de două intrări pentru serii de rădăcini. Asta e tot!

    Să verificăm matematicienii? Și nu se știe niciodată...)

    În lecția anterioară, soluția (fără formule) a unei ecuații trigonometrice cu sinus a fost discutată în detaliu:

    Răspunsul a rezultat în două serii de rădăcini:

    x 1 = π /6 + 2π n, n ∈ Z

    x 2 = 5π /6 + 2π n, n ∈ Z

    Dacă rezolvăm aceeași ecuație folosind formula, obținem răspunsul:

    x = (-1) n arcsin 0,5 + π n, n ∈ Z

    De fapt, acesta este un răspuns neterminat.) Studentul trebuie să știe asta arcsin 0,5 = π /6. Răspunsul complet ar fi:

    x = (-1)n π /6+ π n, n ∈ Z

    Aici apare interes Întreabă. Răspunde prin x 1; x 2 (acesta este răspunsul corect!) și prin singuratic X (și acesta este răspunsul corect!) - sunt sau nu același lucru? Vom afla acum.)

    Inlocuim in raspuns cu x 1 valorile n =0; 1; 2; etc., numărăm, obținem o serie de rădăcini:

    x 1 = π/6; 13π/6; 25π/6 și așa mai departe.

    Cu aceeași înlocuire ca răspuns cu x 2 , primim:

    x 2 = 5π/6; 17π/6; 29π/6 și așa mai departe.

    Acum să înlocuim valorile n (0; 1; 2; 3; 4...) în formula generală pentru single X . Adică ridicăm minus unu la puterea zero, apoi la prima, a doua etc. Ei bine, desigur, substituim 0 în al doilea termen; 1; 2 3; 4, etc. Și numărăm. Primim seria:

    x = π/6; 5π/6; 13π/6; 17π/6; 25π/6 și așa mai departe.

    Atât se vede.) Formula generală ne oferă exact aceleasi rezultate precum cele două răspunsuri separat. Doar totul deodată, în ordine. Matematicienii nu au fost păcăliți.)

    Pot fi verificate și formule pentru rezolvarea ecuațiilor trigonometrice cu tangentă și cotangentă. Dar nu vom face.) Ele sunt deja simple.

    Am scris în mod special toată această înlocuire și verificare. Este important să înțelegeți un lucru aici lucru simplu: există formule pentru rezolvarea ecuațiilor trigonometrice elementare, doar un scurt rezumat al răspunsurilor. Pentru această concizie, a trebuit să introducem plus/minus în soluția de cosinus și (-1) n în soluția de sinus.

    Aceste inserții nu interferează în niciun fel în sarcinile în care trebuie doar să scrieți răspunsul la o ecuație elementară. Dar dacă trebuie să rezolvați o inegalitate sau atunci trebuie să faceți ceva cu răspunsul: selectați rădăcini pe un interval, verificați ODZ etc., aceste inserții pot deranja cu ușurință o persoană.

    Si ce ar trebui sa fac? Da, fie scrieți răspunsul în două serii, fie rezolvați ecuația/inegalitatea folosind cercul trigonometric. Apoi aceste inserții dispar și viața devine mai ușoară.)

    Putem rezuma.

    Pentru a rezolva cele mai simple ecuații trigonometrice, există formule de răspuns gata făcute. Patru piese. Sunt bune pentru a scrie instantaneu soluția unei ecuații. De exemplu, trebuie să rezolvați ecuațiile:


    sinx = 0,3

    Uşor: x = (-1) n arcsin 0,3 + π n, n ∈ Z


    cosx = 0,2

    Nici o problemă: x = ± arccos 0,2 + 2π n, n ∈ Z


    tgx = 1,2

    Uşor: x = arctan 1,2 + π n, n ∈ Z


    ctgx = 3,7

    A mai ramas una: x= arcctg3,7 + π n, n ∈ Z

    cos x = 1,8

    Dacă tu, strălucind de cunoștințe, scrii instantaneu răspunsul:

    x= ± arccos 1,8 + 2π n, n ∈ Z

    atunci deja stralucesti, asta... aia... dintr-o balta.) Raspuns corect: nu exista solutii. Nu inteleg de ce? Citiți ce este arccosinusul. În plus, dacă în partea dreaptă a ecuației inițiale există valori tabelare de sinus, cosinus, tangentă, cotangentă, - 1; 0; √3; 1/2; √3/2 și așa mai departe. - răspunsul prin arcade va fi neterminat. Arcurile trebuie convertite în radiani.

    Și dacă întâlnești inegalitate, cum ar fi

    atunci raspunsul este:

    x πn, n ∈ Z

    există prostii rare, da...) Aici trebuie să rezolvi folosind cercul trigonometric. Ce vom face în subiectul corespunzător.

    Pentru cei care citesc eroic aceste rânduri. Pur și simplu nu pot să nu apreciez eforturile tale titane. Bonus pentru tine.)

    Primă:

    Când notează formule într-o situație alarmantă de luptă, chiar și tocilarii experimentați devin adesea confuzi în legătură cu unde πn, Si unde 2π n. Iată un truc simplu pentru tine. În toata lumea formule de valoare πn. Cu excepția singurei formule cu arc cosinus. Stă acolo 2πn. Două ciocăni. Cuvânt cheie - Două.În aceeași formulă există Două semnează la început. Plus și minus. Aici si acolo - Două.

    Deci daca ai scris Două semn înaintea arcului cosinus, este mai ușor să ne amintim ce se va întâmpla la sfârșit Două ciocăni. Și se întâmplă și invers. Persoana va rata semnul ± , ajunge până la capăt, scrie corect Două Pien și își va veni în fire. Mai e ceva înainte Două semn! Persoana se va întoarce la început și va corecta greșeala! Ca aceasta.)

    Daca va place acest site...

    Apropo, mai am câteva site-uri interesante pentru tine.)

    Puteți exersa rezolvarea exemplelor și puteți afla nivelul dvs. Testare cu verificare instantanee. Să învățăm - cu interes!)

    Vă puteți familiariza cu funcțiile și derivatele.

    Acțiune