Găsiți ecuația dreptei. Ecuația generală a unei drepte pe un plan

Proprietățile unei drepte în geometria euclidiană.

Un număr infinit de linii drepte pot fi trase prin orice punct.

Prin oricare două puncte necoincidente poate fi trasată o singură linie dreaptă.

Două drepte divergente dintr-un plan fie se intersectează într-un singur punct, fie sunt

paralel (urmează din precedentul).

În spațiul tridimensional, există trei opțiuni pentru poziția relativă a două linii:

  • liniile se intersectează;
  • liniile sunt paralele;
  • linii drepte se intersectează.

Drept linia— curbă algebrică de ordinul întâi: o dreaptă în sistemul de coordonate carteziene

este dat pe plan de o ecuație de gradul I (ecuație liniară).

Ecuație generală Drept.

Definiție. Orice linie dreaptă de pe plan poate fi specificată printr-o ecuație de ordinul întâi

Ax + Wu + C = 0,

și constantă A, B nu sunt egale cu zero în același timp. Această ecuație de ordinul întâi se numește general

ecuația unei linii drepte.În funcție de valorile constantelor A, BȘi CU Sunt posibile următoarele cazuri speciale:

. C = 0, A ≠0, B ≠ 0- o linie dreaptă trece prin origine

. A = 0, B ≠0, C ≠0 (Prin + C = 0)- linie dreaptă paralelă cu axa Oh

. B = 0, A ≠0, C ≠ 0 (Ax + C = 0)- linie dreaptă paralelă cu axa OU

. B = C = 0, A ≠0- linia dreaptă coincide cu axa OU

. A = C = 0, B ≠0- linia dreaptă coincide cu axa Oh

Ecuația unei linii drepte poate fi reprezentată în sub diverse formeîn funcţie de orice dat

condiții inițiale.

Ecuația unei drepte dintr-un punct și un vector normal.

Definiție. În carteziană sistem dreptunghiular vector de coordonate cu componente (A, B)

perpendicular pe dreapta dată de ecuație

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte care trece printr-un punct A(1, 2) perpendicular pe vector (3, -1).

Soluţie. Cu A = 3 și B = -1, să compunem ecuația dreptei: 3x - y + C = 0. Pentru a găsi coeficientul C

Să substituim coordonatele punctului dat A în expresia rezultată, obținem: 3 - 2 + C = 0, deci

C = -1. Total: ecuația necesară: 3x - y - 1 = 0.

Ecuația unei drepte care trece prin două puncte.

Să fie date două puncte în spațiu M 1 (x 1 , y 1 , z 1)Și M2 (x 2, y 2, z 2), Apoi ecuația unei linii,

trecând prin aceste puncte:

Dacă oricare dintre numitori este zero, numărătorul corespunzător trebuie setat egal cu zero. Pe

plan, ecuația dreptei scrise mai sus este simplificată:

Dacă x 1 ≠ x 2Și x = x 1, Dacă x 1 = x 2 .

Fracțiune = k numit pantă Drept.

Exemplu. Aflați ecuația dreptei care trece prin punctele A(1, 2) și B(3, 4).

Soluţie. Aplicând formula scrisă mai sus, obținem:

Ecuația unei drepte folosind un punct și panta.

Dacă ecuația generală a dreptei Ax + Wu + C = 0 duce la:

și desemnează , atunci ecuația rezultată se numește

ecuația unei drepte cu panta k.

Ecuația unei drepte dintr-un punct și un vector de direcție.

Prin analogie cu punctul care are în vedere ecuația unei linii drepte prin vectorul normal, puteți intra în sarcină

o dreaptă printr-un punct și un vector de direcție al unei drepte.

Definiție. Fiecare vector diferit de zero (α 1 , α 2), ale căror componente satisfac condiția

Aα 1 + Bα 2 = 0 numit vector de direcție al unei linii drepte.

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte cu un vector de direcție (1, -1) și care trece prin punctul A(1, 2).

Soluţie. Vom căuta ecuația dreptei dorite sub forma: Ax + By + C = 0. Conform definiției,

coeficienții trebuie să îndeplinească următoarele condiții:

1 * A + (-1) * B = 0, adică A = B.

Atunci ecuația dreptei are forma: Ax + Ay + C = 0, sau x + y + C / A = 0.

la x = 1, y = 2 primim C/A = -3, adică ecuația necesară:

x + y - 3 = 0

Ecuația unei drepte în segmente.

Dacă în ecuația generală a dreptei Ах + Ву + С = 0 С≠0, atunci, împărțind la -С, obținem:

sau unde

Sensul geometric al coeficienților este că coeficientul a este coordonata punctului de intersecție

drept cu axa Oh, A b- coordonata punctului de intersecție a dreptei cu axa OU.

Exemplu. Este dată ecuația generală a unei drepte x - y + 1 = 0. Găsiți ecuația acestei drepte în segmente.

C = 1, , a = -1, b = 1.

Ecuația normală a unei linii.

Dacă ambele părți ale ecuației Ax + Wu + C = 0împărțiți la număr Care e numit

factor de normalizare, apoi primim

xcosφ + ysinφ - p = 0 -ecuația normală a unei linii.

Semnul ± al factorului de normalizare trebuie ales astfel încât μ*C< 0.

R- lungimea perpendicularei coborâte de la origine la linia dreaptă,

A φ - unghiul format de aceasta perpendiculara cu directia pozitiva a axei Oh.

Exemplu. Este dată ecuația generală a dreptei 12x - 5y - 65 = 0. Necesar pentru a scrie Tipuri variate ecuații

această linie dreaptă.

Ecuația acestei drepte în segmente:

Ecuația acestei drepte cu panta: (împarte la 5)

Ecuația unei linii:

cos φ = 12/13; sin φ= -5/13; p = 5.

Trebuie remarcat faptul că nu orice linie dreaptă poate fi reprezentată printr-o ecuație în segmente, de exemplu, linii drepte,

paralel cu axele sau trecând prin origine.

Unghiul dintre liniile drepte dintr-un plan.

Definiție. Dacă sunt date două rânduri y = k 1 x + b 1 , y = k 2 x + b 2, apoi unghiul ascuțit dintre aceste linii

va fi definit ca

Două drepte sunt paralele dacă k 1 = k 2. Două liniile drepte sunt perpendiculare,

Dacă k 1 = -1/ k 2 .

Teorema.

Direct Ax + Wu + C = 0Și A 1 x + B 1 y + C 1 = 0 paralel când coeficienții sunt proporționali

A1 = λA, B1 = λB. Dacă de asemenea С 1 = λС, apoi liniile coincid. Coordonatele punctului de intersecție a două drepte

se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat perpendicular pe o dreaptă dată.

Definiție. Linie care trece printr-un punct M 1 (x 1, y 1)și perpendicular pe linie y = kx + b

reprezentat de ecuația:

Distanța de la un punct la o dreaptă.

Teorema. Dacă se acordă un punct M(x 0, y 0), apoi distanța până la linia dreaptă Ax + Wu + C = 0 definit ca:

Dovada. Lasă punctul M 1 (x 1, y 1)- baza unei perpendiculare coborâte dintr-un punct M pentru un dat

direct. Apoi distanța dintre puncte MȘi M 1:

(1)

Coordonatele x 1Și la 1 poate fi găsită ca soluție a sistemului de ecuații:

A doua ecuație a sistemului este ecuația unei drepte care trece printr-un punct dat M 0 perpendicular

linie dreaptă dată. Dacă transformăm prima ecuație a sistemului în forma:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

Teorema a fost demonstrată.

Acest articol continuă subiectul ecuației unei drepte pe un plan: vom considera acest tip de ecuație drept ecuația generală a unei linii. Să definim teorema și să dăm dovada acesteia; Să ne dăm seama ce este o ecuație generală incompletă a unei linii și cum să facem tranziții de la o ecuație generală la alte tipuri de ecuații ale unei linii. Vom consolida întreaga teorie cu ilustrații și soluții la probleme practice.

Yandex.RTB R-A-339285-1

Fie specificat în plan un sistem de coordonate dreptunghiular O x y.

Teorema 1

Orice ecuație de gradul I, având forma A x + B y + C = 0, unde A, B, C sunt unele numere reale(A și B nu sunt egale cu zero în același timp) definește o linie dreaptă într-un sistem de coordonate dreptunghiular pe un plan. La rândul său, orice linie dreaptă dintr-un sistem de coordonate dreptunghiular pe un plan este determinată de o ecuație care are forma A x + B y + C = 0 pentru un anumit set de valori A, B, C.

Dovada

Această teoremă constă din două puncte; vom demonstra fiecare dintre ele.

  1. Să demonstrăm că ecuația A x + B y + C = 0 definește o dreaptă pe plan.

Să existe un punct M 0 (x 0 , y 0) ale cărui coordonate corespund ecuației A x + B y + C = 0. Astfel: A x 0 + B y 0 + C = 0. Scădeți din laturile stânga și dreapta ale ecuațiilor A x + B y + C = 0 laturile stânga și dreapta ale ecuației A x 0 + B y 0 + C = 0, obținem o nouă ecuație care arată ca A (x - x 0) + B (y - y 0) = 0 . Este echivalent cu A x + B y + C = 0.

Ecuația rezultată A (x - x 0) + B (y - y 0) = 0 este o condiție necesară și suficientă pentru perpendicularitatea vectorilor n → = (A, B) și M 0 M → = (x - x) 0, y - y 0). Astfel, mulțimea de puncte M (x, y) definește o dreaptă într-un sistem de coordonate dreptunghiular perpendicular pe direcția vectorului n → = (A, B). Putem presupune că nu este așa, dar atunci vectorii n → = (A, B) și M 0 M → = (x - x 0, y - y 0) nu ar fi perpendiculari, iar egalitatea A (x - x 0 ) + B (y - y 0) = 0 nu ar fi adevărat.

În consecință, ecuația A (x - x 0) + B (y - y 0) = 0 definește o anumită dreaptă într-un sistem de coordonate dreptunghiular pe plan și, prin urmare, ecuația echivalentă A x + B y + C = 0 definește aceeași linie. Așa am demonstrat prima parte a teoremei.

  1. Să oferim o dovadă că orice dreaptă dintr-un sistem de coordonate dreptunghiular pe un plan poate fi specificată printr-o ecuație de gradul I A x + B y + C = 0.

Să definim o dreaptă a într-un sistem de coordonate dreptunghiular pe un plan; punctul M 0 (x 0 , y 0) prin care trece această dreaptă, precum și vectorul normal al acestei drepte n → = (A, B) .

Să existe și un punct M (x, y) - un punct flotant pe o dreaptă. În acest caz, vectorii n → = (A, B) și M 0 M → = (x - x 0, y - y 0) sunt perpendiculari unul pe celălalt, iar lor produs scalar exista zero:

n → , M 0 M → = A (x - x 0) + B (y - y 0) = 0

Să rescriem ecuația A x + B y - A x 0 - B y 0 = 0, definim C: C = - A x 0 - B y 0 și ca rezultat final obținem ecuația A x + B y + C = 0.

Deci, am demonstrat a doua parte a teoremei și am demonstrat întreaga teoremă ca întreg.

Definiția 1

O ecuație a formei A x + B y + C = 0 - Acest ecuația generală a unei linii pe un plan într-un sistem de coordonate dreptunghiularOxy.

Pe baza teoremei dovedite, putem concluziona că o dreaptă și ecuația ei generală definite pe un plan într-un sistem de coordonate dreptunghiular fix sunt indisolubil legate. Cu alte cuvinte, linia originală corespunde ecuației sale generale; ecuația generală a unei linii corespunde unei linii date.

Din demonstrarea teoremei mai rezultă că coeficienții A și B pentru variabilele x și y sunt coordonatele vectorului normal al dreptei, care este dat de ecuația generală a dreptei A x + B y + C = 0.

Sa luam in considerare exemplu concret ecuația generală a unei drepte.

Să fie dată ecuația 2 x + 3 y - 2 = 0, care corespunde unei linii drepte într-un sistem de coordonate dreptunghiular dat. Vectorul normal al acestei linii este vectorul n → = (2, 3) ​​. Să desenăm linia dreaptă dată în desen.

De asemenea, putem afirma următoarele: linia dreaptă pe care o vedem în desen este determinată de ecuația generală 2 x + 3 y - 2 = 0, deoarece coordonatele tuturor punctelor de pe o dreaptă dată corespund acestei ecuații.

Putem obține ecuația λ · A x + λ · B y + λ · C = 0 prin înmulțirea ambelor părți ale ecuației generale a dreptei cu un număr λ nu egal cu zero. Ecuația rezultată este echivalentă cu ecuația generală inițială, prin urmare, va descrie aceeași linie dreaptă pe plan.

Definiția 2

Ecuația generală completă a unei drepte– o astfel de ecuație generală a dreptei A x + B y + C = 0, în care numerele A, B, C sunt diferite de zero. În caz contrar, ecuația este incomplet.

Să analizăm toate variațiile ecuației generale incomplete a unei linii.

  1. Când A = 0, B ≠ 0, C ≠ 0, ecuația generală ia forma B y + C = 0. O astfel de ecuație generală incompletă definește într-un sistem de coordonate dreptunghiular O x y o linie dreaptă care este paralelă cu axa O x, deoarece pentru orice valoare reală a lui x variabila y va lua valoarea - C B . Cu alte cuvinte, ecuația generală a dreptei A x + B y + C = 0, când A = 0, B ≠ 0, specifică locul punctelor (x, y), ale căror coordonate sunt egale cu același număr - C B .
  2. Dacă A = 0, B ≠ 0, C = 0, ecuația generală ia forma y = 0. Această ecuație incompletă definește axa x O x .
  3. Când A ≠ 0, B = 0, C ≠ 0, obținem o ecuație generală incompletă A x + C = 0, definind o dreaptă paralelă cu ordonata.
  4. Fie A ≠ 0, B = 0, C = 0, atunci ecuația generală incompletă va lua forma x = 0, iar aceasta este ecuația dreptei de coordonate O y.
  5. În cele din urmă, pentru A ≠ 0, B ≠ 0, C = 0, ecuația generală incompletă ia forma A x + B y = 0. Și această ecuație descrie o linie dreaptă care trece prin origine. De fapt, perechea de numere (0, 0) corespunde egalității A x + B y = 0, deoarece A · 0 + B · 0 = 0.

Să ilustrăm grafic toate tipurile de ecuații generale incomplete de mai sus ale unei linii drepte.

Exemplul 1

Se știe că linia dreaptă dată este paralelă cu axa ordonatelor și trece prin punctul 2 7, - 11. Este necesar să scrieți ecuația generală a dreptei date.

Soluţie

O dreaptă paralelă cu axa ordonatelor este dată de o ecuație de forma A x + C = 0, în care A ≠ 0. Condiția specifică și coordonatele punctului prin care trece linia, iar coordonatele acestui punct îndeplinesc condițiile ecuației generale incomplete A x + C = 0, adică. egalitatea este adevarata:

A 2 7 + C = 0

Din aceasta este posibil să se determine C dacă îi dăm lui A o valoare diferită de zero, de exemplu, A = 7. În acest caz, obținem: 7 · 2 7 + C = 0 ⇔ C = - 2. Cunoaștem ambii coeficienți A și C, înlocuiți-i în ecuația A x + C = 0 și obținem ecuația dreaptă necesară: 7 x - 2 = 0

Răspuns: 7 x - 2 = 0

Exemplul 2

Desenul arată o linie dreaptă; trebuie să scrieți ecuația acesteia.

Soluţie

Desenul dat ne permite să luăm cu ușurință datele inițiale pentru a rezolva problema. Vedem în desen că linia dreaptă dată este paralelă cu axa O x și trece prin punctul (0, 3).

Linia dreaptă, care este paralelă cu abscisa, este determinată de ecuația generală incompletă B y + C = 0. Să găsim valorile lui B și C. Coordonatele punctului (0, 3), deoarece linia dată trece prin el, vor satisface ecuația dreptei B y + C = 0, atunci egalitatea este valabilă: B · 3 + C = 0. Să setăm B la o altă valoare decât zero. Să spunem B = 1, caz în care din egalitatea B · 3 + C = 0 putem găsi C: C = - 3. Folosim valori cunoscute B și C, obținem ecuația necesară a dreptei: y - 3 = 0.

Răspuns: y - 3 = 0 .

Ecuația generală a unei drepte care trece printr-un punct dat dintr-un plan

Să treacă dreapta dată prin punctul M 0 (x 0 , y 0), apoi coordonatele ei corespund ecuației generale a dreptei, adică. egalitatea este adevărată: A x 0 + B y 0 + C = 0. Să scădem părțile stânga și dreaptă ale acestei ecuații din laturile stânga și dreapta ale ecuației generale complete a dreptei. Se obține: A (x - x 0) + B (y - y 0) + C = 0, această ecuație este echivalentă cu cea generală inițială, trece prin punctul M 0 (x 0, y 0) și are o normală vector n → = (A, B) .

Rezultatul pe care l-am obținut face posibilă scrierea ecuației generale a dreptei cu coordonate cunoscute vectorul normal al unei drepte și coordonatele unui anumit punct de pe această dreaptă.

Exemplul 3

Dat un punct M 0 (- 3, 4) prin care trece o dreaptă și vectorul normal al acestei linii n → = (1 , - 2) . Este necesar să scrieți ecuația dreptei date.

Soluţie

Condițiile inițiale ne permit să obținem datele necesare compunerii ecuației: A = 1, B = - 2, x 0 = - 3, y 0 = 4. Apoi:

A (x - x 0) + B (y - y 0) = 0 ⇔ 1 (x - (- 3)) - 2 y (y - 4) = 0 ⇔ ⇔ x - 2 y + 22 = 0

Problema ar fi putut fi rezolvată altfel. Ecuația generală a unei drepte este A x + B y + C = 0. Vectorul normal dat ne permite să obținem valorile coeficienților A și B, atunci:

A x + B y + C = 0 ⇔ 1 x - 2 y + C = 0 ⇔ x - 2 y + C = 0

Acum să găsim valoarea lui C folosind punctul M 0 (- 3, 4) specificat de condiția problemei, prin care trece linia dreaptă. Coordonatele acestui punct corespund ecuației x - 2 · y + C = 0, adică. - 3 - 2 4 + C = 0. Prin urmare, C = 11. Ecuația de linie dreaptă necesară ia forma: x - 2 · y + 11 = 0.

Răspuns: x - 2 y + 11 = 0 .

Exemplul 4

Având în vedere o dreaptă 2 3 x - y - 1 2 = 0 și un punct M 0 situat pe această dreaptă. Numai abscisa acestui punct este cunoscută și este egală cu - 3. Este necesar să se determine ordonata unui punct dat.

Soluţie

Să desemnăm coordonatele punctului M 0 ca x 0 și y 0 . Datele sursă indică faptul că x 0 = - 3. Deoarece punctul aparține unei linii date, atunci coordonatele sale corespund ecuației generale a acestei linii. Atunci egalitatea va fi adevărată:

2 3 x 0 - y 0 - 1 2 = 0

Definiți y 0: 2 3 · (- 3) - y 0 - 1 2 = 0 ⇔ - 5 2 - y 0 = 0 ⇔ y 0 = - 5 2

Răspuns: - 5 2

Trecerea de la ecuația generală a unei linii la alte tipuri de ecuații ale unei linii și invers

După cum știm, există mai multe tipuri de ecuații pentru aceeași linie dreaptă pe un plan. Alegerea tipului de ecuație depinde de condițiile problemei; se poate alege pe cel mai convenabil pentru rezolvare. Abilitatea de a converti o ecuație de un tip într-o ecuație de alt tip este foarte utilă aici.

Mai întâi, să considerăm trecerea de la ecuația generală de forma A x + B y + C = 0 la ecuația canonică x - x 1 a x = y - y 1 a y.

Dacă A ≠ 0, atunci mutăm termenul B y în partea dreaptă a ecuației generale. În partea stângă scoatem A din paranteze. Ca rezultat, obținem: A x + C A = - B y.

Această egalitate poate fi scrisă ca o proporție: x + C A - B = y A.

Dacă B ≠ 0, lăsăm doar termenul A x în partea stângă a ecuației generale, transferăm pe celelalte în partea dreaptă, obținem: A x = - B y - C. Scoatem – B din paranteze, apoi: A x = - B y + C B .

Să rescriem egalitatea sub forma unei proporții: x - B = y + C B A.

Desigur, nu este nevoie să memorezi formulele rezultate. Este suficient să cunoașteți algoritmul acțiunilor atunci când treceți de la o ecuație generală la una canonică.

Exemplul 5

Este dată ecuația generală a dreptei 3 y - 4 = 0. Este necesar să o transformăm într-o ecuație canonică.

Soluţie

Să scriem ecuația inițială ca 3 y - 4 = 0. În continuare, procedăm conform algoritmului: termenul 0 x rămâne în partea stângă; iar pe partea dreaptă punem - 3 din paranteze; obținem: 0 x = - 3 y - 4 3 .

Să scriem egalitatea rezultată ca proporție: x - 3 = y - 4 3 0 . Astfel, am obținut o ecuație de formă canonică.

Răspuns: x - 3 = y - 4 3 0.

Pentru a transforma ecuația generală a unei linii în cele parametrice, se face mai întâi o tranziție la forma canonică, apoi o tranziție de la ecuația canonică a unei linii la ecuații parametrice.

Exemplul 6

Linia dreaptă este dată de ecuația 2 x - 5 y - 1 = 0. Notați ecuațiile parametrice pentru această dreaptă.

Soluţie

Să facem trecerea de la ecuația generală la cea canonică:

2 x - 5 y - 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Acum luăm ambele părți ale ecuației canonice rezultate egale cu λ, atunci:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 λ y = - 1 5 + 2 λ , λ ∈ R

Răspuns:x = 5 λ y = - 1 5 + 2 λ , λ ∈ R

Ecuația generală poate fi convertită într-o ecuație a unei drepte cu panta y = k · x + b, dar numai când B ≠ 0. Pentru tranziție, lăsăm termenul B y în partea stângă, restul sunt transferați la dreapta. Se obține: B y = - A x - C . Să împărțim ambele părți ale egalității rezultate la B, diferit de zero: y = - A B x - C B.

Exemplul 7

Ecuația generală a dreptei este dată: 2 x + 7 y = 0. Trebuie să convertiți acea ecuație într-o ecuație a pantei.

Soluţie

Să efectuăm acțiunile necesare conform algoritmului:

2 x + 7 y = 0 ⇔ 7 y - 2 x ⇔ y = - 2 7 x

Răspuns: y = - 2 7 x .

Din ecuația generală a unei linii, este suficient să obțineți pur și simplu o ecuație în segmente de forma x a + y b = 1. Pentru a face o astfel de tranziție, mutăm numărul C în partea dreaptă a egalității, împărțim ambele părți ale egalității rezultate la – C și, în final, transferăm coeficienții pentru variabilele x și y la numitori:

A x + B y + C = 0 ⇔ A x + B y = - C ⇔ ⇔ A - C x + B - C y = 1 ⇔ x - C A + y - C B = 1

Exemplul 8

Este necesar să se transforme ecuația generală a dreptei x - 7 y + 1 2 = 0 în ecuația dreptei în segmente.

Soluţie

Să mutăm 1 2 în partea dreaptă: x - 7 y + 1 2 = 0 ⇔ x - 7 y = - 1 2 .

Să împărțim ambele părți ale egalității la -1/2: x - 7 y = - 1 2 ⇔ 1 - 1 2 x - 7 - 1 2 y = 1 .

Răspuns: x - 1 2 + y 1 14 = 1 .

În general, trecerea inversă este și ea ușoară: de la alte tipuri de ecuații la cea generală.

Ecuația unei linii în segmente și o ecuație cu un coeficient unghiular pot fi ușor convertite într-una generală prin simpla colectare a tuturor termenilor din partea stângă a egalității:

x a + y b ⇔ 1 a x + 1 b y - 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y - k x - b = 0 ⇔ A x + B y + C = 0

Ecuația canonică este convertită într-una generală conform următoarei scheme:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x (y - y 1) ⇔ ⇔ a y x - a x y - a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Pentru a trece de la cele parametrice, treceți mai întâi la cea canonică, apoi la cea generală:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ A x + B y + C = 0

Exemplul 9

Sunt date ecuațiile parametrice ale dreptei x = - 1 + 2 · λ y = 4. Este necesar să scrieți ecuația generală a acestei linii.

Soluţie

Să facem tranziția de la ecuațiile parametrice la cele canonice:

x = - 1 + 2 · λ y = 4 ⇔ x = - 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y - 4 0 ⇔ x + 1 2 = y - 4 0

Să trecem de la canonic la general:

x + 1 2 = y - 4 0 ⇔ 0 · (x + 1) = 2 (y - 4) ⇔ y - 4 = 0

Răspuns: y - 4 = 0

Exemplul 10

Este dată ecuația unei drepte în segmentele x 3 + y 1 2 = 1. Este necesar să se facă o tranziție la aspectul general ecuații

Soluţie:

Pur și simplu rescriem ecuația în forma necesară:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y - 1 = 0

Răspuns: 1 3 x + 2 y - 1 = 0 .

Întocmirea unei ecuații generale a unei drepte

Am spus mai sus că ecuația generală poate fi scrisă cu coordonatele cunoscute ale vectorului normal și coordonatele punctului prin care trece dreapta. O astfel de linie dreaptă este definită de ecuația A (x - x 0) + B (y - y 0) = 0. Acolo am analizat și exemplul corespunzător.

Acum să ne uităm la mai multe exemple complexe, în care mai întâi trebuie să determinați coordonatele vectorului normal.

Exemplul 11

Dată o dreaptă paralelă cu dreapta 2 x - 3 y + 3 3 = 0. Se cunoaşte şi punctul M 0 (4, 1) prin care trece linia dată. Este necesar să scrieți ecuația dreptei date.

Soluţie

Condițiile inițiale ne spun că dreptele sunt paralele, apoi, ca vector normal al dreptei, a cărei ecuație trebuie scrisă, luăm vectorul direcție al dreptei n → = (2, - 3): 2 x - 3 y + 3 3 = 0. Acum cunoaștem toate datele necesare pentru a crea ecuația generală a dreptei:

A (x - x 0) + B (y - y 0) = 0 ⇔ 2 (x - 4) - 3 (y - 1) = 0 ⇔ 2 x - 3 y - 5 = 0

Răspuns: 2 x - 3 y - 5 = 0 .

Exemplul 12

Linia dată trece prin originea perpendiculară pe dreapta x - 2 3 = y + 4 5. Este necesar să se creeze o ecuație generală pentru o linie dată.

Soluţie

Vectorul normal al unei linii date va fi vectorul direcție al dreptei x - 2 3 = y + 4 5.

Atunci n → = (3, 5) . Linia dreaptă trece prin origine, adică. prin punctul O (0, 0). Să creăm o ecuație generală pentru o linie dată:

A (x - x 0) + B (y - y 0) = 0 ⇔ 3 (x - 0) + 5 (y - 0) = 0 ⇔ 3 x + 5 y = 0

Răspuns: 3 x + 5 y = 0 .

Dacă observați o eroare în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

Ecuația unei drepte care trece printr-un punct dat într-o direcție dată. Ecuația unei drepte care trece prin două puncte date. Unghiul dintre două linii drepte. Condiția de paralelism și perpendicularitate a două drepte. Determinarea punctului de intersecție a două drepte

1. Ecuația unei drepte care trece printr-un punct dat A(X 1 , y 1) într-o direcție dată, determinată de pantă k,

y - y 1 = k(X - X 1). (1)

Această ecuație definește un creion de linii care trec printr-un punct A(X 1 , y 1), care se numește centrul fasciculului.

2. Ecuația unei drepte care trece prin două puncte: A(X 1 , y 1) și B(X 2 , y 2), scris astfel:

Coeficientul unghiular al unei drepte care trece prin două puncte date este determinat de formula

3. Unghiul dintre liniile drepte AȘi B este unghiul cu care trebuie rotită prima linie dreaptă Aîn jurul punctului de intersecție al acestor linii în sens invers acelor de ceasornic până când acesta coincide cu a doua linie B. Dacă două drepte sunt date de ecuaţii cu pantă

y = k 1 X + B 1 ,

Ecuația unei drepte pe un plan.

După cum se știe, orice punct din plan este determinat de două coordonate într-un sistem de coordonate. Sistemele de coordonate pot fi diferite în funcție de alegerea bazei și a originii.

Definiție. Ecuația liniilor se numeşte relaţia y = f(x) între coordonatele punctelor care alcătuiesc această dreaptă.

Rețineți că ecuația unei linii poate fi exprimată parametric, adică fiecare coordonată a fiecărui punct este exprimată printr-un parametru independent t.

Un exemplu tipic este traiectoria unui punct în mișcare. În acest caz, rolul parametrului este jucat de timp.

Ecuația unei drepte pe un plan.

Definiție. Orice linie dreaptă de pe plan poate fi specificată printr-o ecuație de ordinul întâi

Ax + Wu + C = 0,

Mai mult, constantele A și B nu sunt egale cu zero în același timp, adică. A 2 + B 2  0. Această ecuație de ordinul întâi se numește ecuația generală a unei drepte.

In functie de valori constanta A, Bși C sunt posibile următoarele cazuri speciale:

    C = 0, A  0, B  0 – dreapta trece prin origine

    A = 0, B  0, C  0 (By + C = 0) - linie dreaptă paralelă cu axa Ox

    B = 0, A  0, C  0 (Ax + C = 0) – linie dreaptă paralelă cu axa Oy

    B = C = 0, A  0 – linia dreaptă coincide cu axa Oy

    A = C = 0, B  0 – linia dreaptă coincide cu axa Ox

Ecuația unei linii drepte poate fi prezentată în diferite forme în funcție de orice condiții inițiale date.

Ecuația unei drepte dintr-un punct și un vector normal.

Definiție. În sistemul de coordonate dreptunghiular cartezian, un vector cu componente (A, B) este perpendicular pe dreapta dată de ecuația Ax + By + C = 0.

Exemplu. Aflați ecuația dreptei care trece prin punctul A(1, 2) perpendicular pe vector (3, -1).

Cu A = 3 și B = -1, să compunem ecuația dreptei: 3x – y + C = 0. Pentru a găsi coeficientul C, înlocuim coordonatele punctului dat A în expresia rezultată.

Se obține: 3 – 2 + C = 0, deci C = -1.

Total: ecuația necesară: 3x – y – 1 = 0.

Ecuația unei drepte care trece prin două puncte.

Fie date două puncte M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2) în spațiu, atunci ecuația dreptei care trece prin aceste puncte este:

Dacă oricare dintre numitori este zero, numărătorul corespunzător trebuie setat egal cu zero.

Pe plan, ecuația dreptei scrise mai sus este simplificată:

dacă x 1  x 2 și x = x 1, dacă x 1 = x 2.

Fracțiune
=k se numește pantă Drept.

Exemplu. Aflați ecuația dreptei care trece prin punctele A(1, 2) și B(3, 4).

Aplicând formula scrisă mai sus, obținem:

Ecuația unei drepte folosind un punct și panta.

Dacă ecuația generală a dreptei Ax + By + C = 0 se reduce la forma:

și desemnează
, atunci ecuația rezultată se numește ecuația unei drepte cu pantak.

Ecuația unei drepte dintr-un punct și un vector de direcție.

Prin analogie cu punctul care are în vedere ecuația unei drepte printr-un vector normal, puteți introduce definiția unei drepte printr-un punct și vectorul de direcție al dreptei.

Definiție. Fiecare vector diferit de zero ( 1,  2), ale cărei componente îndeplinesc condiția A 1 + B 2 = 0 se numește vectorul de direcție al dreptei

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte cu un vector de direcție (1, -1) și trecând prin punctul A(1, 2).

Vom căuta ecuația dreptei dorite sub forma: Ax + By + C = 0. Conform definiției, coeficienții trebuie să îndeplinească condițiile:

1A + (-1)B = 0, adică. A = B.

Atunci ecuația dreptei are forma: Ax + Ay + C = 0, sau x + y + C/A = 0.

la x = 1, y = 2 obținem C/A = -3, adică. ecuația necesară:

Ecuația unei drepte în segmente.

Dacă în ecuația generală a dreptei Ах + Ву + С = 0 С 0, atunci, împărțind la –С, obținem:
sau

, Unde

Sensul geometric al coeficienților este că coeficientul A este coordonata punctului de intersecție a dreptei cu axa Ox și b– coordonata punctului de intersecție a dreptei cu axa Oy.

Exemplu. Este dată ecuația generală a dreptei x – y + 1 = 0. Aflați ecuația acestei drepte în segmente.

C = 1,
, a = -1,b = 1.

Ecuația normală a unei linii.

Dacă ambele părți ale ecuației Ax + By + C = 0 sunt împărțite la număr
Care e numit factor de normalizare, apoi primim

xcos + ysin - p = 0 –

ecuația normală a unei linii.

Semnul  al factorului de normalizare trebuie ales astfel încât С< 0.

p este lungimea perpendicularei coborâte de la origine la dreapta, iar  este unghiul format de această perpendiculară cu direcția pozitivă a axei Ox.

Exemplu. Este dată ecuația generală a dreptei 12x – 5y – 65 = 0. Este necesar să se scrie diverse tipuri de ecuații pentru această dreaptă.

ecuația acestei drepte în segmente:

ecuația acestei drepte cu panta: (împarte la 5)

ecuația normală a unei linii:

; cos = 12/13; sin = -5/13; p = 5.

Trebuie remarcat faptul că nu orice linie dreaptă poate fi reprezentată printr-o ecuație în segmente, de exemplu, drepte paralele cu axele sau care trec prin originea coordonatelor.

Exemplu. Linia dreaptă taie segmente pozitive egale pe axele de coordonate. Scrieți o ecuație a unei drepte dacă aria triunghiului format din aceste segmente este de 8 cm2.

Ecuația dreptei este:
, a = b = 1; ab/2 = 8; a = 4; -4.

a = -4 nu este potrivit în funcție de condițiile problemei.

Total:
sau x + y – 4 = 0.

Exemplu. Scrieți o ecuație pentru o dreaptă care trece prin punctul A(-2, -3) și origine.

Ecuația dreptei este:
, unde x 1 = y 1 = 0; x2 = -2; y 2 = -3.

Unghiul dintre liniile drepte dintr-un plan.

Definiție. Dacă sunt date două drepte y = k 1 x + b 1, y = k 2 x + b 2, atunci unghiul ascuțit dintre aceste drepte va fi definit ca

.

Două drepte sunt paralele dacă k 1 = k 2.

Două drepte sunt perpendiculare dacă k 1 = -1/k 2 .

Teorema. Linii directe Ax + Wu + C = 0 și A 1 x + B 1 y + C 1 = 0 sunt paralele când coeficienții A sunt proporționali 1 = A, B 1 = B. Dacă și C 1 = C, atunci liniile coincid.

Coordonatele punctului de intersecție a două drepte se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat

perpendicular pe această dreaptă.

Definiție. O dreaptă care trece prin punctul M 1 (x 1, y 1) și perpendiculară pe dreapta y = kx + b este reprezentată de ecuația:

Distanța de la un punct la o dreaptă.

Teorema. Dacă este dat punctul M(x). 0 , y 0 ), atunci distanța până la linia dreaptă Ах + Ву + С =0 este definită ca

.

Dovada. Fie punctul M 1 (x 1, y 1) să fie baza perpendicularei căzute din punctul M la o dreaptă dată. Atunci distanța dintre punctele M și M 1:

Coordonatele x 1 și y 1 pot fi găsite prin rezolvarea sistemului de ecuații:

A doua ecuație a sistemului este ecuația unei drepte care trece printr-un punct dat M 0 perpendicular pe o dreaptă dată.

Dacă transformăm prima ecuație a sistemului în forma:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

.

Teorema a fost demonstrată.

Exemplu. Determinați unghiul dintre drepte: y = -3x + 7; y = 2x + 1.

k1 = -3; k 2 = 2 tg =
;  = /4.

Exemplu. Arătați că dreptele 3x – 5y + 7 = 0 și 10x + 6y – 3 = 0 sunt perpendiculare.

Găsim: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, prin urmare, dreptele sunt perpendiculare.

Exemplu. Sunt date vârfurile triunghiului A(0; 1), B(6; 5), C(12; -1). Găsiți ecuația înălțimii desenată din vârful C.

Găsim ecuația laturii AB:
; 4x = 6y – 6;

2x – 3y + 3 = 0;

Ecuația de înălțime necesară are forma: Ax + By + C = 0 sau y = kx + b.

k = . Atunci y =
. Deoarece înălțimea trece prin punctul C, apoi coordonatele sale satisfac această ecuație:
de unde b = 17. Total:
.

Răspuns: 3x + 2y – 34 = 0.

Geometrie analitică în spațiu.

Ecuația unei drepte în spațiu.

Ecuația unei drepte în spațiu dat un punct și

vector de direcție.

Să luăm o linie arbitrară și un vector (m, n, p), paralel cu dreapta dată. Vector numit vector ghid Drept.

Pe linie dreaptă luăm două puncte arbitrare M 0 (x 0 , y 0 , z 0) și M (x, y, z).

z

M 1

Să notăm vectorii de rază ai acestor puncte ca Și , este evident că - =
.

Deoarece vectori
Și sunt coliniare, atunci relația este adevărată
= t, unde t este un parametru.

În total, putem scrie: = + t.

Deoarece această ecuație este satisfăcută de coordonatele oricărui punct de pe linie, atunci ecuația rezultată este ecuația parametrică a unei linii.

Această ecuație vectorială poate fi reprezentată sub formă de coordonate:

Transformând acest sistem și echivalând valorile parametrului t, obținem ecuațiile canonice ale unei linii drepte în spațiu:

.

Definiție. Cosinusuri de direcție directe sunt cosinusurile de direcție ale vectorului , care poate fi calculat folosind formulele:

;

.

De aici obținem: m: n: p = cos : cos : cos.

Se numesc numerele m, n, p coeficienții de unghi Drept. Deoarece este un vector diferit de zero, atunci m, n și p nu pot fi egali cu zero în același timp, dar unul sau două dintre aceste numere pot fi egale cu zero. În acest caz, în ecuația dreptei, numărătorii corespunzători ar trebui setați egali cu zero.

Ecuația unei drepte în spațiul care trece

prin două puncte.

Dacă pe o dreaptă în spațiu notăm două puncte arbitrare M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2), atunci coordonatele acestor puncte trebuie să satisfacă ecuația dreptei. obtinut mai sus:

.

În plus, pentru punctul M 1 putem scrie:

.

Rezolvând împreună aceste ecuații, obținem:

.

Aceasta este ecuația unei drepte care trece prin două puncte din spațiu.

Ecuații generale ale unei drepte în spațiu.

Ecuația unei drepte poate fi considerată drept ecuația dreptei de intersecție a două plane.

După cum sa discutat mai sus, un plan în formă vectorială poate fi specificat prin ecuația:

+ D = 0, unde

- plan normal; - raza este vectorul unui punct arbitrar din plan.

Definiție. Orice linie dreaptă de pe plan poate fi specificată printr-o ecuație de ordinul întâi

Ax + Wu + C = 0,

Mai mult, constantele A și B nu sunt egale cu zero în același timp. Această ecuație de ordinul întâi se numește ecuația generală a unei drepte.În funcție de valorile constantelor A, B și C, sunt posibile următoarele cazuri speciale:

C = 0, A ≠0, B ≠ 0 – dreapta trece prin origine

A = 0, B ≠0, C ≠0 (By + C = 0) - linie dreaptă paralelă cu axa Ox

B = 0, A ≠0, C ≠ 0 (Ax + C = 0) – linie dreaptă paralelă cu axa Oy

B = C = 0, A ≠0 – linia dreaptă coincide cu axa Oy

A = C = 0, B ≠0 – linia dreaptă coincide cu axa Ox

Ecuația unei linii drepte poate fi prezentată în diferite forme în funcție de orice condiții inițiale date.

Ecuația unei drepte dintr-un punct și vector normal

Definiție.În sistemul de coordonate dreptunghiular cartezian, un vector cu componente (A, B) este perpendicular pe dreapta dată de ecuația Ax + By + C = 0.

Exemplu. Aflați ecuația dreptei care trece prin punctul A(1, 2) perpendicular pe (3, -1).

Soluţie. Cu A = 3 și B = -1, să compunem ecuația dreptei: 3x – y + C = 0. Pentru a găsi coeficientul C, înlocuim coordonatele punctului dat A în expresia rezultată, obținem: 3 – 2 + C = 0, prin urmare, C = -1 . Total: ecuația necesară: 3x – y – 1 = 0.

Ecuația unei drepte care trece prin două puncte

Fie date două puncte M 1 (x 1, y 1, z 1) și M 2 (x 2, y 2, z 2) în spațiu, atunci ecuația dreptei care trece prin aceste puncte este:

Dacă oricare dintre numitori este egal cu zero, numărătorul corespunzător ar trebui să fie egal cu zero. În plan, ecuația dreptei scrise mai sus este simplificată:

dacă x 1 ≠ x 2 și x = x 1, dacă x 1 = x 2.

Se numește fracția = k pantă Drept.

Exemplu. Aflați ecuația dreptei care trece prin punctele A(1, 2) și B(3, 4).

Soluţie. Aplicând formula scrisă mai sus, obținem:

Ecuația unei drepte dintr-un punct și panta

Dacă totalul Ax + Bu + C = 0, duce la forma:

și desemnează , atunci ecuația rezultată se numește ecuația unei drepte cu pantak.

Ecuația unei drepte dintr-un punct și un vector de direcție

Prin analogie cu punctul care are în vedere ecuația unei drepte printr-un vector normal, puteți introduce definiția unei drepte printr-un punct și vectorul de direcție al dreptei.

Definiție. Fiecare vector diferit de zero (α 1, α 2), ale cărui componente îndeplinesc condiția A α 1 + B α 2 = 0 se numește vector de direcție al dreptei

Ax + Wu + C = 0.

Exemplu. Aflați ecuația unei drepte cu un vector de direcție (1, -1) și care trece prin punctul A(1, 2).

Soluţie. Vom căuta ecuația dreptei dorite sub forma: Ax + By + C = 0. Conform definiției, coeficienții trebuie să îndeplinească condițiile:

1 * A + (-1) * B = 0, adică A = B.

Atunci ecuația dreptei are forma: Ax + Ay + C = 0, sau x + y + C / A = 0. pentru x = 1, y = 2 obținem C/ A = -3, adică. ecuația necesară:

Ecuația unei drepte în segmente

Dacă în ecuația generală a dreptei Ах + Ву + С = 0 С≠0, atunci, împărțind la –С, obținem: sau

Sensul geometric al coeficienților este că coeficientul A este coordonata punctului de intersecție a dreptei cu axa Ox și b– coordonata punctului de intersecție a dreptei cu axa Oy.

Exemplu. Este dată ecuația generală a dreptei x – y + 1 = 0. Aflați ecuația acestei drepte în segmente.

C = 1, , a = -1, b = 1.

Ecuația normală a unei linii

Dacă ambele părți ale ecuației Ax + By + C = 0 sunt înmulțite cu numărul Care e numit factor de normalizare, apoi primim

xcosφ + ysinφ - p = 0 –

ecuația normală a unei linii. Semnul ± al factorului de normalizare trebuie ales astfel încât μ * C< 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Exemplu. Este dată ecuația generală a dreptei 12x – 5y – 65 = 0. Este necesar să se scrie diverse tipuri de ecuații pentru această dreaptă.

ecuația acestei drepte în segmente:

ecuația acestei drepte cu panta: (împarte la 5)

; cos φ = 12/13; sin φ= -5/13; p = 5.

Trebuie remarcat faptul că nu orice linie dreaptă poate fi reprezentată printr-o ecuație în segmente, de exemplu, drepte paralele cu axele sau care trec prin originea coordonatelor.

Exemplu. Linia dreaptă taie segmente pozitive egale pe axele de coordonate. Scrieți o ecuație pentru o dreaptă dacă aria triunghiului format din aceste segmente este de 8 cm2.

Soluţie. Ecuația dreptei are forma: , ab /2 = 8; ab=16; a=4, a=-4. a = -4< 0 не подходит по условию задачи. Итого: или х + у – 4 = 0.

Exemplu. Scrieți o ecuație pentru o dreaptă care trece prin punctul A(-2, -3) și origine.

Soluţie. Ecuația dreptei este: , unde x 1 = y 1 = 0; x2 = -2; y 2 = -3.

Unghiul dintre liniile drepte pe un plan

Definiție. Dacă sunt date două drepte y = k 1 x + b 1, y = k 2 x + b 2, atunci unghiul ascuțit dintre aceste drepte va fi definit ca

.

Două drepte sunt paralele dacă k 1 = k 2. Două drepte sunt perpendiculare dacă k 1 = -1/ k 2.

Teorema. Dreptele Ax + Bу + C = 0 și A 1 x + B 1 y + C 1 = 0 sunt paralele când coeficienții A 1 = λA, B 1 = λB sunt proporționali. Dacă și C 1 = λC, atunci liniile coincid. Coordonatele punctului de intersecție a două drepte se găsesc ca soluție a sistemului de ecuații ale acestor drepte.

Ecuația unei drepte care trece printr-un punct dat perpendicular pe o dreaptă dată

Definiție. O dreaptă care trece prin punctul M 1 (x 1, y 1) și perpendiculară pe dreapta y = kx + b este reprezentată de ecuația:

Distanța de la punct la linie

Teorema. Dacă este dat un punct M(x 0, y 0), atunci distanța până la dreapta Ax + Bу + C = 0 este determinată ca

.

Dovada. Fie punctul M 1 (x 1, y 1) să fie baza perpendicularei căzute din punctul M la o dreaptă dată. Atunci distanța dintre punctele M și M 1:

(1)

Coordonatele x 1 și y 1 pot fi găsite prin rezolvarea sistemului de ecuații:

A doua ecuație a sistemului este ecuația unei drepte care trece printr-un punct dat M 0 perpendicular pe o dreaptă dată. Dacă transformăm prima ecuație a sistemului în forma:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

apoi, rezolvand, obtinem:

Înlocuind aceste expresii în ecuația (1), găsim:

Teorema a fost demonstrată.

Exemplu. Să se determine unghiul dintre drepte: y = -3 x + 7; y = 2 x + 1.

k1 = -3; k2 = 2; tgφ = ; φ= π /4.

Exemplu. Arătați că dreptele 3x – 5y + 7 = 0 și 10x + 6y – 3 = 0 sunt perpendiculare.

Soluţie. Găsim: k 1 = 3/5, k 2 = -5/3, k 1* k 2 = -1, prin urmare, dreptele sunt perpendiculare.

Exemplu. Sunt date vârfurile triunghiului A(0; 1), B (6; 5), C (12; -1). Găsiți ecuația înălțimii desenată din vârful C.

Soluţie. Găsim ecuația laturii AB: ; 4 x = 6 y – 6;

2 x – 3 y + 3 = 0;

Ecuația de înălțime necesară are forma: Ax + By + C = 0 sau y = kx + b. k = . Atunci y = . Deoarece înălțimea trece prin punctul C, apoi coordonatele sale satisfac această ecuație: de unde b = 17. Total: .

Răspuns: 3 x + 2 y – 34 = 0.

Acțiune