Care este fața laterală a unei piramide obișnuite? Bazele geometriei: o piramidă obișnuită este

Acest tutorial video va ajuta utilizatorii să-și facă o idee despre tema piramidei. Piramida corectă. În această lecție ne vom familiariza cu conceptul de piramidă și îi vom da o definiție. Să ne uităm la ce este piramida regulata si ce proprietati are. Apoi demonstrăm teorema despre suprafața laterală a unei piramide regulate.

În această lecție ne vom familiariza cu conceptul de piramidă și îi vom da o definiție.

Luați în considerare un poligon A 1 A 2...A n, care se află în planul α și punctul P, care nu se află în planul α (Fig. 1). Să conectăm punctele P cu vârfuri A 1, A 2, A 3, … A n. Primim n triunghiuri: A 1 A 2 R, A 2 A 3 Rși așa mai departe.

Definiție. Poliedru RA 1 A 2 ...A n, alcătuit din n-pătrat A 1 A 2...A nȘi n triunghiuri RA 1 A 2, RA 2 A 3RA n A n-1 este numit n-piramida cărbunelui. Orez. 1.

Orez. 1

Luați în considerare o piramidă patruunghiulară PABCD(Fig. 2).

R- vârful piramidei.

ABCD- baza piramidei.

RA- coasta laterala.

AB- coasta de baza.

Din punct de vedere R să scăpăm perpendiculara RN la planul de bază ABCD. Perpendiculara desenată este înălțimea piramidei.

Orez. 2

Suprafața completă a piramidei este formată din suprafața laterală, adică aria tuturor fețelor laterale și aria bazei:

S plin = S lateral + S principal

O piramidă se numește corectă dacă:

  • baza sa este un poligon regulat;
  • segmentul care leagă vârful piramidei de centrul bazei este înălțimea acesteia.

Explicație folosind exemplul unei piramide patruunghiulare obișnuite

Luați în considerare o piramidă patruunghiulară obișnuită PABCD(Fig. 3).

R- vârful piramidei. Baza piramidei ABCD- un patrulater regulat, adică un pătrat. Punct DESPRE, punctul de intersecție al diagonalelor, este centrul pătratului. Mijloace, RO este înălțimea piramidei.

Orez. 3

Explicaţie: în corect nÎntr-un triunghi, centrul cercului înscris și centrul cercului circumscris coincid. Acest centru se numește centrul poligonului. Uneori se spune că vârful este proiectat în centru.

Se numește înălțimea feței laterale a unei piramide regulate trasă din vârful acesteia apotema si este desemnat h a.

1. toate marginile laterale ale unei piramide regulate sunt egale;

2. Fețele laterale sunt triunghiuri isoscele egale.

Vom da o dovadă a acestor proprietăți folosind exemplul unei piramide patruunghiulare obișnuite.

Dat: PABCD- piramida patruunghiulara regulata,

ABCD- pătrat,

RO- inaltimea piramidei.

Dovedi:

1. RA = PB = RS = PD

2.∆ABP = ∆BCP =∆CDP =∆DAP Vezi Fig. 4.

Orez. 4

Dovada.

RO- inaltimea piramidei. Adică drept RO perpendicular pe plan ABC, și deci direct SA, VO, SOȘi DO culcat în ea. Deci triunghiuri ROA, ROV, ROS, ROD- dreptunghiular.

Luați în considerare un pătrat ABCD. Din proprietățile unui pătrat rezultă că AO = VO = CO = DO.

Apoi triunghiurile dreptunghiulare ROA, ROV, ROS, ROD picior RO- general si picioare SA, VO, SOȘi DO sunt egale, ceea ce înseamnă că aceste triunghiuri sunt egale pe două laturi. Din egalitatea triunghiurilor rezultă egalitatea segmentelor, RA = PB = RS = PD. Punctul 1 a fost dovedit.

Segmente ABȘi Soare sunt egale pentru că sunt laturile aceluiași pătrat, RA = PB = RS. Deci triunghiuri AVRȘi VSR - isoscel și egal pe trei laturi.

Într-un mod similar găsim că triunghiurile ABP, VCP, CDP, DAP sunt isoscele și egale, așa cum trebuie dovedit la paragraful 2.

Aria suprafeței laterale a unei piramide regulate este egală cu jumătate din produsul dintre perimetrul bazei și apotema:

Pentru a demonstra acest lucru, să alegem o piramidă triunghiulară obișnuită.

Dat: RAVS- piramida triunghiulara regulata.

AB = BC = AC.

RO- înălțime.

Dovedi: . Vezi fig. 5.

Orez. 5

Dovada.

RAVS- piramida triunghiulara regulata. Acesta este AB= AC = BC. Lăsa DESPRE- centrul triunghiului ABC, Apoi RO este înălțimea piramidei. La baza piramidei se află triunghi echilateral ABC. observa asta .

Triunghiuri RAV, RVS, RSA- triunghiuri isoscele egale (după proprietate). O piramidă triunghiulară are trei fețe laterale: RAV, RVS, RSA. Aceasta înseamnă că aria suprafeței laterale a piramidei este:

Partea S = 3S RAW

Teorema a fost demonstrată.

Raza unui cerc înscris la baza unei piramide patruunghiulare obișnuite este de 3 m, înălțimea piramidei este de 4 m. Aflați aria suprafeței laterale a piramidei.

Dat: piramidă patruunghiulară regulată ABCD,

ABCD- pătrat,

r= 3 m,

RO- inaltimea piramidei,

RO= 4 m.

Găsi: partea S. Vezi fig. 6.

Orez. 6

Soluţie.

Conform teoremei dovedite, .

Să găsim mai întâi partea laterală a bazei AB. Știm că raza unui cerc înscris la baza unei piramide patruunghiulare regulate este de 3 m.

Apoi, m.

Aflați perimetrul pătratului ABCD cu latura de 6 m:

Luați în considerare un triunghi BCD. Lăsa M- mijlocul lateral DC. Deoarece DESPRE- mijloc BD, Acea (m).

Triunghi DPC- isoscel. M- mijloc DC. Acesta este, RM- mediana, și deci înălțimea în triunghi DPC. Apoi RM- apotema piramidei.

RO- inaltimea piramidei. Apoi, drept RO perpendicular pe plan ABC, și deci direct OM, culcat în ea. Să găsim apotema RM dintr-un triunghi dreptunghic ROM.

Acum putem găsi suprafata laterala piramide:

Răspuns: 60 m2.

Raza cercului circumscris bazei unei piramide triunghiulare regulate este egală cu m. Aria suprafeței laterale este de 18 m 2. Aflați lungimea apotemului.

Dat: ABCP- piramida triunghiulara regulata,

AB = BC = SA,

R= m,

Latura S = 18 m2.

Găsi: . Vezi fig. 7.

Orez. 7

Soluţie.

Într-un triunghi dreptunghic ABC Este dată raza cercului circumscris. Să găsim o parte AB acest triunghi folosind legea sinusurilor.

Cunoscând latura unui triunghi regulat (m), găsim perimetrul acestuia.

Prin teorema pe suprafața laterală a unei piramide regulate, unde h a- apotema piramidei. Apoi:

Răspuns: 4 m.

Deci, ne-am uitat la ce este o piramidă, ce este o piramidă obișnuită și am demonstrat teorema despre suprafața laterală a unei piramide obișnuite. În lecția următoare ne vom familiariza cu piramida trunchiată.

Bibliografie

  1. Geometrie. Clasele 10-11: manual pentru elevi institutii de invatamant(de bază și niveluri de profil) / I. M. Smirnova, V. A. Smirnov. - Ed. a 5-a, rev. si suplimentare - M.: Mnemosyne, 2008. - 288 p.: ill.
  2. Geometrie. Clasa 10-11: Manual pentru învățământul general institutii de invatamant/ Sharygin I.F. - M.: Butard, 1999. - 208 p.: ill.
  3. Geometrie. Nota a 10-a: Manual pentru instituţiile de învăţământ general cu studiu aprofundat şi de specialitate la matematică /E. V. Potoskuev, L. I. Zvalich. - Ed. a VI-a, stereotip. - M.: Butard, 008. - 233 p.: ill.
  1. Portalul de internet „Yaklass” ()
  2. Portalul de internet „Festival idei pedagogice„Primul septembrie” ()
  3. Portalul de internet „Slideshare.net” ()

Teme pentru acasă

  1. Poate un poligon regulat să fie baza unei piramide neregulate?
  2. Demonstrați că muchiile disjunse ale unei piramide regulate sunt perpendiculare.
  3. Aflați valoarea unghiului diedrului de pe latura bazei unei piramide patruunghiulare regulate dacă apotema piramidei este egală cu latura bazei acesteia.
  4. RAVS- piramida triunghiulara regulata. Construiți unghiul liniar al unghiului diedric de la baza piramidei.

Definiție. Marginea laterală- acesta este un triunghi în care un unghi se află în vârful piramidei, iar latura opusă coincide cu latura bazei (poligon).

Definiție. Coaste laterale- acestea sunt laturile comune ale fețelor laterale. O piramidă are tot atâtea muchii cât unghiurile unui poligon.

Definiție. Înălțimea piramidei- aceasta este o perpendiculară coborâtă de la vârf la baza piramidei.

Definiție. Apotema- aceasta este o perpendiculară pe fața laterală a piramidei, coborâtă din vârful piramidei până în lateralul bazei.

Definiție. Secțiune diagonală- aceasta este o secțiune a unei piramide printr-un plan care trece prin vârful piramidei și diagonala bazei.

Definiție. Piramida corectă este o piramidă în care baza este un poligon regulat, iar înălțimea coboară până în centrul bazei.


Volumul și suprafața piramidei

Formulă. Volumul piramidei prin zona de bază și înălțimea:


Proprietățile piramidei

Dacă toate marginile laterale sunt egale, atunci un cerc poate fi desenat în jurul bazei piramidei, iar centrul bazei coincide cu centrul cercului. De asemenea, o perpendiculară căzută din vârf trece prin centrul bazei (cercului).

Dacă toate marginile laterale sunt egale, atunci ele sunt înclinate față de planul bazei la aceleași unghiuri.

Nervele laterale sunt egale când se formează cu planul bazei unghiuri egale sau dacă se poate descrie un cerc în jurul bazei piramidei.

Dacă fețele laterale sunt înclinate față de planul bazei la același unghi, atunci un cerc poate fi înscris în baza piramidei, iar vârful piramidei este proiectat în centrul acesteia.

Dacă fețele laterale sunt înclinate față de planul bazei la același unghi, atunci apotemele fețelor laterale sunt egale.


Proprietățile unei piramide obișnuite

1. Vârful piramidei este echidistant de toate colțurile bazei.

2. Toate marginile laterale sunt egale.

3. Toate nervurile laterale sunt înclinate la unghiuri egale față de bază.

4. Apotemele tuturor fețelor laterale sunt egale.

5. Suprafețele tuturor fețelor laterale sunt egale.

6. Toate fețele au aceleași unghiuri diedrice (plate).

7. O sferă poate fi descrisă în jurul piramidei. Centrul sferei circumscrise va fi punctul de intersecție al perpendicularelor care trec prin mijlocul marginilor.

8. Puteți încadra o sferă într-o piramidă. Centrul sferei înscrise va fi punctul de intersecție al bisectoarelor care emană din unghiul dintre margine și bază.

9. Dacă centrul sferei înscrise coincide cu centrul sferei circumscrise, atunci suma unghiurilor plane de la vârf este egală cu π sau invers, un unghi este egal cu π/n, unde n este numărul de unghiuri la baza piramidei.


Legătura dintre piramidă și sferă

O sferă poate fi descrisă în jurul unei piramide când la baza piramidei există un poliedru în jurul căruia poate fi descris un cerc (o condiție necesară și suficientă). Centrul sferei va fi punctul de intersecție al planurilor care trec perpendicular prin punctele de mijloc ale marginilor laterale ale piramidei.

Este întotdeauna posibil să descrii o sferă în jurul oricărei piramide triunghiulare sau regulate.

O sferă poate fi înscrisă într-o piramidă dacă planurile bisectoare ale unghiurilor diedrice interne ale piramidei se intersectează într-un punct (o condiție necesară și suficientă). Acest punct va fi centrul sferei.


Legătura unei piramide cu un con

Se spune că un con este înscris într-o piramidă dacă vârfurile lor coincid și baza conului este înscrisă în baza piramidei.

Un con poate fi înscris într-o piramidă dacă apotemele piramidei sunt egale între ele.

Se spune că un con este circumscris în jurul unei piramide dacă vârfurile lor coincid, iar baza conului este circumscrisă în jurul bazei piramidei.

Un con poate fi descris în jurul unei piramide dacă toate marginile laterale ale piramidei sunt egale între ele.


Relația dintre o piramidă și un cilindru

O piramidă se numește înscrisă într-un cilindru dacă vârful piramidei se află pe o bază a cilindrului, iar baza piramidei este înscrisă într-o altă bază a cilindrului.

Un cilindru poate fi descris în jurul unei piramide dacă un cerc poate fi descris în jurul bazei piramidei.


Definiție. Piramida trunchiată (prismă piramidală) este un poliedru care se află între baza piramidei și planul de secțiune paralel cu baza. Astfel, o piramidă are o bază mai mare și o bază mai mică care este similară cu cea mai mare. Fețele laterale sunt trapezoidale.

Definiție. Piramida triunghiulara(tetraedru) este o piramidă în care trei fețe și baza sunt triunghiuri arbitrare.

Un tetraedru are patru fețe și patru vârfuri și șase muchii, unde orice două muchii nu au vârfuri comune, dar nu se ating.

Fiecare vârf este format din trei fețe și muchii care se formează unghi triunghiular.

Segmentul care leagă vârful unui tetraedru cu centrul feței opuse se numește mediana tetraedrului(GM).

Bimedian numit segment care leagă punctele medii ale muchiilor opuse care nu se ating (KL).

Toate bimedianele și medianele unui tetraedru se intersectează într-un punct (S). În acest caz, bimedianele sunt împărțite în jumătate, iar medianele sunt împărțite într-un raport de 3:1 începând de sus.

Definiție. Piramidă înclinată este o piramidă în care una dintre margini formează un unghi obtuz (β) cu baza.

Definiție. Piramidă dreptunghiulară este o piramidă în care una dintre fețele laterale este perpendiculară pe bază.

Definiție. Piramidă unghiulară ascuțită- o piramidă în care apotema are mai mult de jumătate din lungimea laturii bazei.

Definiție. Piramidă obtuză- o piramidă în care apotema este mai mică de jumătate din lungimea laturii bazei.

Definiție. Tetraedru regulat- un tetraedru în care toate cele patru fețe sunt triunghiuri echilaterale. Este unul dintre cele cinci poligoane regulate. Într-un tetraedru obișnuit, toate unghiurile diedrice (între fețe) și unghiurile triedrice (la vârf) sunt egale.

Definiție. Tetraedru dreptunghiular se numește tetraedru în care există un unghi drept între trei muchii la vârf (marginile sunt perpendiculare). Se formează trei fețe unghi triunghiular dreptunghiular iar fețele sunt triunghiuri dreptunghiulare, iar baza este un triunghi arbitrar. Apotema oricărei fețe este egală cu jumătate din latura bazei pe care cade apotema.

Definiție. Tetraedru izoedric se numește tetraedru ale cărui fețe laterale sunt egale între ele, iar baza este un triunghi regulat. Un astfel de tetraedru are fețe care sunt triunghiuri isoscele.

Definiție. tetraedru ortocentric se numește tetraedru în care se intersectează într-un punct toate înălțimile (perpendicularele) care sunt coborâte de la vârf la fața opusă.

Definiție. Piramida stelară numit poliedru a cărui bază este o stea.

Definiție. Bipiramida- un poliedru format din două piramide diferite (piramidele pot fi și tăiate) având teren comun, iar vârfurile se află de-a lungul laturi diferite din planul bazei.

Definiție

Piramidă este un poliedru compus dintr-un poligon \(A_1A_2...A_n\) și \(n\) triunghiuri cu un vârf comun \(P\) (nu se află în planul poligonului) și laturile opuse acestuia, care coincid cu laturile poligonului.
Denumire: \(PA_1A_2...A_n\) .
Exemplu: piramidă pentagonală \(PA_1A_2A_3A_4A_5\) .

Triunghiuri \(PA_1A_2, \PA_2A_3\), etc. sunt numite fetele laterale piramide, segmente \(PA_1, PA_2\), etc. – coaste laterale, poligon \(A_1A_2A_3A_4A_5\) – bază, punctul \(P\) – top.

Înălţime piramidele sunt o perpendiculară coborâtă de la vârful piramidei până la planul bazei.

Se numește o piramidă cu un triunghi la bază tetraedru.

Piramida se numește corect, dacă baza sa este un poligon regulat și este îndeplinită una dintre următoarele condiții:

\((a)\) marginile laterale ale piramidei sunt egale;

\((b)\) înălțimea piramidei trece prin centrul cercului circumscris lângă bază;

\((c)\) nervurile laterale sunt înclinate față de planul bazei la același unghi.

\((d)\) fețele laterale sunt înclinate față de planul bazei la același unghi.

Tetraedru regulat este o piramidă triunghiulară, toate ale cărei fețe sunt triunghiuri echilaterale egale.

Teorema

Condițiile \((a), (b), (c), (d)\) sunt echivalente.

Dovada

Să aflăm înălțimea piramidei \(PH\) . Fie \(\alpha\) planul bazei piramidei.


1) Să demonstrăm că din \((a)\) rezultă \((b)\) . Fie \(PA_1=PA_2=PA_3=...=PA_n\) .

Deoarece \(PH\perp \alpha\), atunci \(PH\) este perpendiculară pe orice dreaptă situată în acest plan, ceea ce înseamnă că triunghiurile sunt dreptunghiulare. Aceasta înseamnă că aceste triunghiuri sunt egale în cateta comună \(PH\) și ipotenuză \(PA_1=PA_2=PA_3=...=PA_n\) . Aceasta înseamnă \(A_1H=A_2H=...=A_nH\) . Aceasta înseamnă că punctele \(A_1, A_2, ..., A_n\) sunt la aceeași distanță de punctul \(H\), prin urmare, ele se află pe același cerc cu raza \(A_1H\) . Acest cerc, prin definiție, este circumscris poligonului \(A_1A_2...A_n\) .

2) Să demonstrăm că \((b)\) implică \((c)\) .

\(PA_1H, PA_2H, PA_3H,..., PA_nH\) dreptunghiulară și egală pe două picioare. Aceasta înseamnă că unghiurile lor sunt de asemenea egale, prin urmare, \(\angle PA_1H=\angle PA_2H=...=\angle PA_nH\).

3) Să demonstrăm că \((c)\) implică \((a)\) .

Similar cu primul punct, triunghiuri \(PA_1H, PA_2H, PA_3H,..., PA_nH\) dreptunghiular atât de-a lungul piciorului cât și unghiul ascuțit. Aceasta înseamnă că și ipotenuzele lor sunt egale, adică \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Să demonstrăm că \((b)\) implică \((d)\) .

Deoarece într-un poligon regulat centrele cercurilor circumscrise și înscrise coincid (în general, acest punct se numește centrul unui poligon regulat), atunci \(H\) este centrul cercului înscris. Să desenăm perpendiculare din punctul \(H\) spre laturile bazei: \(HK_1, HK_2\), etc. Acestea sunt razele cercului înscris (prin definiție). Apoi, conform TTP (\(PH\) este o perpendiculară pe plan, \(HK_1, HK_2\), etc. sunt proiecții perpendiculare pe laturi) înclinate \(PK_1, PK_2\), etc. perpendicular pe laturile \(A_1A_2, A_2A_3\), etc. respectiv. Deci, prin definiție \(\unghi PK_1H, \unghi PK_2H\) egal cu unghiurile dintre fețele laterale și bază. Deoarece triunghiurile \(PK_1H, PK_2H, ...\) sunt egale (ca dreptunghiulare pe două laturi), apoi unghiurile \(\unghi PK_1H, \unghi PK_2H, ...\) sunt egale.

5) Să demonstrăm că \((d)\) implică \((b)\) .

Similar cu al patrulea punct, triunghiurile \(PK_1H, PK_2H, ...\) sunt egale (ca dreptunghiulare de-a lungul catetei și unghi ascuțit), ceea ce înseamnă că segmentele \(HK_1=HK_2=...=HK_n\) sunt egal. Aceasta înseamnă, prin definiție, \(H\) este centrul unui cerc înscris în bază. Dar pentru că Pentru poligoane regulate, centrele cercului înscris și circumscris coincid, atunci \(H\) este centrul cercului circumscris. Chtd.

Consecinţă

Fețele laterale ale unei piramide regulate sunt triunghiuri isoscele egale.

Definiție

Se numește înălțimea feței laterale a unei piramide regulate trasă din vârful acesteia apotema.
Apotemele tuturor fețelor laterale ale unei piramide regulate sunt egale între ele și sunt, de asemenea, mediane și bisectoare.

Notite importante

1. Înălțimea unei piramide triunghiulare regulate cade în punctul de intersecție a înălțimilor (sau bisectoarelor, sau medianelor) bazei (baza este un triunghi regulat).

2. Înălțimea unei piramide patruunghiulare regulate scade în punctul de intersecție a diagonalelor bazei (baza este un pătrat).

3. Înălțimea unei piramide hexagonale regulate scade în punctul de intersecție a diagonalelor bazei (baza este un hexagon regulat).

4. Înălțimea piramidei este perpendiculară pe orice linie dreaptă aflată la bază.

Definiție

Piramida se numește dreptunghiular, dacă una dintre marginile sale laterale este perpendiculară pe planul bazei.


Notite importante

1. Într-o piramidă dreptunghiulară, muchia perpendiculară pe bază este înălțimea piramidei. Adică \(SR\) este înălțimea.

2. Pentru că Atunci \(SR\) este perpendiculară pe orice dreaptă de la bază \(\triunghi SRM, \triunghi SRP\)– triunghiuri dreptunghiulare.

3. Triunghiuri \(\triunghi SRN, \triunghi SRK\)- de asemenea dreptunghiular.
Adică, orice triunghi format din această muchie și diagonala care iese din vârful acestei muchii aflată la bază va fi dreptunghiular.

\[(\Large(\text(Volumul și suprafața piramidei)))\]

Teorema

Volumul piramidei este egal cu o treime din produsul dintre suprafața bazei și înălțimea piramidei: \

Consecințe

Fie \(a\) latura bazei, \(h\) înălțimea piramidei.

1. Volumul unei piramide triunghiulare regulate este \(V_(\text(triunghi drept.pir.))=\dfrac(\sqrt3)(12)a^2h\),

2. Volumul unei piramide patruunghiulare regulate este \(V_(\text(right.four.pir.))=\dfrac13a^2h\).

3. Volumul unei piramide hexagonale regulate este \(V_(\text(right.six.pir.))=\dfrac(\sqrt3)(2)a^2h\).

4. Volumul unui tetraedru regulat este \(V_(\text(right tetr.))=\dfrac(\sqrt3)(12)a^3\).

Teorema

Aria suprafeței laterale a unei piramide regulate este egală cu jumătatea produsului dintre perimetrul bazei și apotema.

\[(\Large(\text(Frustum)))\]

Definiție

Considerăm o piramidă arbitrară \(PA_1A_2A_3...A_n\) . Să desenăm un plan paralel cu baza piramidei printr-un anumit punct situat pe marginea laterală a piramidei. Acest plan va împărți piramida în două poliedre, dintre care una este o piramidă (\(PB_1B_2...B_n\)), iar cealaltă se numește trunchi de piramidă(\(A_1A_2...A_nB_1B_2...B_n\) ).


Piramida trunchiată are două baze - poligoane \(A_1A_2...A_n\) și \(B_1B_2...B_n\) care sunt similare între ele.

Înălțimea unei piramide trunchiate este o perpendiculară trasată de la un punct al bazei superioare la planul bazei inferioare.

Notite importante

1. Toate fețele laterale ale unei piramide trunchiate sunt trapeze.

2. Segmentul care leagă centrele bazelor unei piramide trunchiate regulate (adică o piramidă obținută prin secțiunea transversală a unei piramide regulate) este înălțimea.

Piramidă. Piramida trunchiată

Piramidă este un poliedru, una dintre fețele căruia este un poligon ( baza ), iar toate celelalte fețe sunt triunghiuri cu un vârf comun ( fetele laterale ) (Fig. 15). Piramida se numește corect , dacă baza sa este un poligon regulat și vârful piramidei este proiectat în centrul bazei (Fig. 16). Se numește o piramidă triunghiulară cu toate muchiile egale tetraedru .



Coastă laterală a unei piramide este latura feței laterale care nu aparține bazei Înălţime piramida este distanța de la vârful ei până la planul bazei. Toate marginile laterale ale unei piramide obișnuite sunt egale între ele, toate fețele laterale sunt triunghiuri isoscele egale. Înălțimea feței laterale a unei piramide obișnuite trasă din vârf se numește apotema . Secțiune diagonală se numește secțiune a unei piramide printr-un plan care trece prin două margini laterale care nu aparțin aceleiași fețe.

Suprafata laterala piramida este suma ariilor tuturor fețelor laterale. Suprafata totala se numește suma ariilor tuturor fețelor laterale și ale bazei.

Teoreme

1. Dacă într-o piramidă toate marginile laterale sunt înclinate egal față de planul bazei, atunci vârful piramidei este proiectat în centrul cercului circumscris bazei.

2. Dacă toate marginile laterale ale unei piramide au lungimi egale, atunci vârful piramidei este proiectat în centrul unui cerc circumscris lângă bază.

3. Dacă toate fețele dintr-o piramidă sunt înclinate egal față de planul bazei, atunci vârful piramidei este proiectat în centrul unui cerc înscris în bază.

Pentru a calcula volumul unei piramide arbitrare, formula corectă este:

Unde V- volum;

S baza– suprafata de baza;

H– înălțimea piramidei.

Pentru o piramidă obișnuită, următoarele formule sunt corecte:

Unde p– perimetrul de bază;

h a– apotema;

H- inaltime;

S plin

partea S

S baza– suprafata de baza;

V– volumul unei piramide regulate.

Piramida trunchiată numită partea de piramidă închisă între bază și un plan de tăiere paralel cu baza piramidei (Fig. 17). Piramida trunchiată obișnuită numită partea unei piramide regulate închisă între bază și un plan de tăiere paralel cu baza piramidei.

Motive trunchi de piramidă - poligoane asemănătoare. Fețe laterale – trapeze. Înălţime a unei piramide trunchiate este distanța dintre bazele sale. Diagonală o piramidă trunchiată este un segment care leagă vârfurile sale care nu se află pe aceeași față. Secțiune diagonală este o secțiune a unei trunchi de piramidă printr-un plan care trece prin două margini laterale care nu aparțin aceleiași fețe.


Pentru o piramidă trunchiată sunt valabile următoarele formule:

(4)

Unde S 1 , S 2 – zone ale bazelor superioare și inferioare;

S plin– suprafata totala;

partea S– suprafata laterala;

H- inaltime;

V– volumul unei piramide trunchiate.

Pentru o piramidă trunchiată obișnuită formula este corectă:

Unde p 1 , p 2 – perimetrele bazelor;

h a– apotema unei piramide trunchiate obișnuite.

Exemplul 1.Într-o piramidă triunghiulară obișnuită, unghiul diedric de la bază este de 60º. Aflați tangenta unghiului de înclinare a marginii laterale la planul bazei.

Soluţie. Să facem un desen (Fig. 18).


Piramida este regulată, ceea ce înseamnă că la bază există un triunghi echilateral și toate fețele laterale sunt triunghiuri isoscele egale. Unghiul diedric de la bază este unghiul de înclinare a feței laterale a piramidei față de planul bazei. Unghiul liniar este unghiul Aîntre două perpendiculare: etc. Vârful piramidei este proiectat în centrul triunghiului (centrul cercului circumferitor și cercul înscris al triunghiului ABC). Unghiul de înclinare a marginii laterale (de exemplu S.B.) este unghiul dintre marginea însăși și proiecția acesteia pe planul bazei. Pentru coastă S.B. acest unghi va fi unghiul SBD. Pentru a găsi tangenta trebuie să cunoașteți picioarele ASA DEȘi O.B.. Fie lungimea segmentului BD este egal cu 3 A. Punct DESPRE segment de linie BD este împărțit în părți: și Din găsim ASA DE: Din găsim:

Răspuns:

Exemplul 2. Găsiți volumul unei piramide patrulatere trunchiate obișnuite dacă diagonalele bazelor sale sunt egale cu cm și cm, iar înălțimea ei este de 4 cm.

Soluţie. Pentru a afla volumul unei piramide trunchiate, folosim formula (4). Pentru a găsi aria bazelor, trebuie să găsiți laturile pătratelor de bază, cunoscând diagonalele acestora. Laturile bazelor sunt egale cu 2 cm și, respectiv, 8 cm. Aceasta înseamnă ariile bazelor și Înlocuind toate datele în formulă, calculăm volumul piramidei trunchiate:

Răspuns: 112 cm 3.

Exemplul 3. Găsiți aria feței laterale a unei piramide trunchiate triunghiulare regulate, ale cărei laturi ale bazelor sunt de 10 cm și 4 cm, iar înălțimea piramidei este de 2 cm.

Soluţie. Să facem un desen (Fig. 19).


Fața laterală a acestei piramide este un trapez isoscel. Pentru a calcula aria unui trapez, trebuie să cunoașteți baza și înălțimea. Bazele sunt date în funcție de stare, doar înălțimea rămâne necunoscută. O vom găsi de unde A 1 E perpendicular de la un punct A 1 pe planul bazei inferioare, A 1 D– perpendicular de la A 1 per AC. A 1 E= 2 cm, deoarece aceasta este înălțimea piramidei. A găsi DE Să facem un desen suplimentar care arată vedere de sus (Fig. 20). Punct DESPRE– proiecția centrelor bazelor superioare și inferioare. întrucât (vezi Fig. 20) şi Pe de altă parte Bine– raza înscrisă în cerc şi OM– raza înscrisă într-un cerc:

MK = DE.

Conform teoremei lui Pitagora din

Zona feței laterale:


Răspuns:

Exemplul 4. La baza piramidei se află un trapez isoscel, ale cărui baze AȘi b (A> b). Fiecare față laterală formează un unghi egal cu planul bazei piramidei j. Aflați suprafața totală a piramidei.

Soluţie. Să facem un desen (Fig. 21). Suprafața totală a piramidei SABCD egală cu suma ariilor și aria trapezului ABCD.

Să folosim afirmația că, dacă toate fețele piramidei sunt înclinate egal față de planul bazei, atunci vârful este proiectat în centrul cercului înscris în bază. Punct DESPRE– proiecția vârfurilor S la baza piramidei. Triunghi GAZON este proiecția ortogonală a triunghiului CSD la planul bazei. Folosind teorema privind aria proiecției ortogonale a unei figuri plane, obținem:


La fel înseamnă Astfel, problema s-a redus la găsirea zonei trapezului ABCD. Să desenăm un trapez ABCD separat (Fig. 22). Punct DESPRE– centrul unui cerc înscris într-un trapez.


Deoarece un cerc poate fi înscris într-un trapez, atunci sau Din teorema lui Pitagora avem

  • apotema- înălțimea feței laterale a unei piramide regulate, care este desenată din vârful acesteia (în plus, apotema este lungimea perpendicularei, care este coborâtă de la mijlocul poligonului regulat la una dintre laturile sale);
  • fetele laterale (ASB, BSC, CSD, DSA) - triunghiuri care se întâlnesc la vârf;
  • coaste laterale ( LA FEL DE , B.S. , C.S. , D.S. ) — laturile comune ale fețelor laterale;
  • vârful piramidei (t. S) - un punct care leagă nervurile laterale și care nu se află în planul bazei;
  • înălţime ( ASA DE ) - un segment perpendicular trasat prin vârful piramidei până la planul bazei acesteia (capetele unui astfel de segment vor fi vârful piramidei și baza perpendicularei);
  • secțiunea diagonală a piramidei- o sectiune a piramidei care trece prin varful si diagonala bazei;
  • baza (ABCD) - un poligon care nu aparține vârfului piramidei.

Proprietățile piramidei.

1. Când toate marginile laterale au aceeași dimensiune, atunci:

  • este ușor să descrii un cerc lângă baza piramidei, iar vârful piramidei va fi proiectat în centrul acestui cerc;
  • nervurile laterale formează unghiuri egale cu planul bazei;
  • Mai mult, este adevărat și opusul, adică. când nervurile laterale formează unghiuri egale cu planul bazei sau când un cerc poate fi descris în jurul bazei piramidei și vârful piramidei va fi proiectat în centrul acestui cerc, înseamnă că toate marginile laterale ale piramidei au aceeași dimensiune.

2. Când fețele laterale au un unghi de înclinare față de planul bazei de aceeași valoare, atunci:

  • este ușor să descrii un cerc lângă baza piramidei, iar vârful piramidei va fi proiectat în centrul acestui cerc;
  • înălțimile fețelor laterale sunt de lungime egală;
  • aria suprafeței laterale este egală cu ½ produsul dintre perimetrul bazei și înălțimea feței laterale.

3. O sferă poate fi descrisă în jurul unei piramide dacă la baza piramidei există un poligon în jurul căruia poate fi descris un cerc (o condiție necesară și suficientă). Centrul sferei va fi punctul de intersecție al planurilor care trec prin mijlocul marginilor piramidei perpendicular pe acestea. Din această teoremă concluzionăm că o sferă poate fi descrisă atât în ​​jurul oricărei piramide triunghiulare, cât și în jurul oricărei piramide regulate.

4. O sferă poate fi înscrisă într-o piramidă dacă planele bisectoare ale unghiurilor diedrice interne ale piramidei se intersectează în punctul 1 (condiție necesară și suficientă). Acest punct va deveni centrul sferei.

Cea mai simplă piramidă.

Pe baza numărului de unghiuri, baza piramidei este împărțită în triunghiular, patruunghiular și așa mai departe.

Va fi o piramidă triunghiular, patruunghiular, și așa mai departe, când baza piramidei este un triunghi, un patrulater și așa mai departe. O piramidă triunghiulară este un tetraedru - un tetraedru. Patraunghiular - pentagonal și așa mai departe.

Acțiune