Статистика многомерные исследовательские методы анализ факторов. Многомерный статистический анализ (128,00 руб.). Основные понятия метода факторного анализа, суть решаемых им задач

Учебное пособие создано на основе опыта преподавания автором курсов многомерного статистического анализа и эконометрики. Содержит материалы по дискриминантному, факторному, регрессионному анализу, анализу соответствий и теории временных рядов. Изложены подходы к задачам многомерного шкалирования и некоторым другим задачам многомерной статистики.

Группировка и цензурирование.
Задача формирования групп выборочных данных таким образом, чтобы сгруппированные данные могли предоставить практически тот же объем информации для принятия решения, что и выборка до группировки, решается исследователем в первую очередь. Целями группировки, как правило, служат снижение объемов информации, упрощение вычислений и придание наглядности данным. Некоторые статистические критерии изначально ориентированы на работу со сгруппированной выборкой. В определенных аспектах задача группировки очень близка задаче классификации, о которой подробнее речь пойдет ниже. Одновременно с задачей группировки исследователь решает и задачу цензурирования выборки, т.е. исключения из нее резко выпадающих данных, как правило, являющихся следствием грубых ошибок наблюдений. Естественно, желательно обеспечить отсутствие таких ошибок еще в процессе самих наблюдений, по сделать это удается не всегда. Простейшие методы решения упомянутых двух задач рассмотрены в этой главе.

Оглавление
1 Предварительные сведения
1.1 Анализ и алгебра
1.2 Теория вероятностей
1.3 Математическая статистика
2 Многомерные распределения
2.1 Случайные векторы
2.2 Независимость
2.3 Числовые характеристики
2.4 Нормальное распределение в многомерном случае
2.5 Корреляционная теория
3 Группировка и цензурирование
3.1 Одномерная группировка
3.2 Одномерное цензурирование
3.3 Таблицы сопряженности
3.3.1 Гипотеза независимости
3.3.2 Гипотеза однородности
3.3.3 Поле корреляции
3.4 Многомерная группировка
3.5 Многомерное цензурирование
4 Нечисловые данные
4.1 Вводные замечания
4.2 Шкалы сравнений
4.3 Экспертные оценки
4.4 Группы экспертов
5 Доверительные множества
5.1 Доверительные интервалы
5.2 Доверительные множества
5.2.1 Многомерный параметр
5.2.2 Многомерная выборка
5.3 Толерантные множества
5.4 Малая выборка
6 Регрессионный анализ
6.1 Постановка задачи
6.2 Поиск ОМНК
6.3 Ограничения
6.4 Матрица плана
6.5 Статистический прогноз
7 Дисперсионный анализ
7.1 Вводные замечания
7.1.1 Нормальность
7.1.2 Однородность дисперсий
7.2 Один фактор
7.3 Два фактора
7.4 Общий случай
8 Снижение размерности
8.1 Зачем нужна классификация
8.2 Модель и примеры
8.2.1 Метод главных компонент
8.2.2 Экстремальная группировка признаков
8.2.3 Многомерное шкалирование
8.2.4 Отбор показателей для дискриминантного анализа
8.2.5 Отбор показателей в модели регрессии
9 Дискриминантный анализ
9.1 Применимость модели
9.2 Линейное прогностическое правило
9.3 Практические рекомендации
9.4 Один пример
9.5 Более двух классов
9.6 Проверка качества дискриминации
10 Эвристические методы
10.1 Экстремальная группировка
10.1.1 Критерий квадратов
10.1.2 Критерий модулей
10 2 Метод плеяд
11 Метод главных компонент
11 1 Постановка задачи
112 Вычисление главных компонент
11.3 Пример
114 Свойства главных компонент
11.4.1 Самовоспроизводимость
11.4.2 Геометрические свойства
12 Факторный анализ
12.1 Постановка задачи
12.1.1 Связь с главными компонентами
12.1.2 Однозначность решения
12.2 Математическая модель
12.2.1 Условия на Аt А
12.2.2 Условия на матрицу нагрузок. Центроидный метод
12.3 Латентные факторы
12.3.1 Метод Бартлетта
12.3.2 Метод Томсона
12.4 Пример
13 Оцифровка
13.1 Анализ соответствий
13.1.1 Расстояние хи-квадрат
13.1.2 Оцифровка для задач дискриминантного анализа
13.2 Более двух переменных
13.2.1 Использование бинарной матрицы данных в качестве матрицы соответствий
13.2.2 Максимальные корреляции
13.3 Размерность
13.4 Пример
13.5 Случай смешанных данных
14 Многомерное шкалирование
14.1 Вводные замечания
14.2 Модель Торгерсона
14.2.1 Стресс-критерий
14.3 Алгоритм Торгерсона
14.4 Индивидуальные различия
15 Временные ряды
15.1 Общие положения
15.2 Критерии случайности
15.2.1 Пики и ямы
15.2.2 Распределение длины фазы
15.2.3 Критерии, основанные на ранговой корреляции
15.2.4 Коррелограмма
15.3 Тренд и сезонность
15.3.1 Полиномиальные тренды
15.3.2 Выбор степени тренда
15.3.3 Сглаживание
15.3.4 Оценка сезонных колебаний
А Нормальное распределение
В Распределение X2
С Распределение Стьюдента
D Распределение Фишера.


Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Многомерный статистический анализ, Дронов С.В., 2003 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

По эконометрике

Многомерный статистический анализ


В многомерном статистическом анализе выборка состоит из элементов многомерного пространства. Отсюда и название этого раздела эконометрических методов. Из многих задач многомерного статистического анализа рассмотрим две - восстановления зависимости и классификации.

Оценивание линейной прогностической функции

Начнем с задачи точечного и доверительного оценивания линейной прогностической функции одной переменной.

Исходные данные – набор n пар чисел (t k , x k), k = 1,2,…,n, где t k – независимая переменная (например, время), а x k – зависимая (например, индекс инфляции, курс доллара США, объем месячного производства или размер дневной выручки торговой точки). Предполагается, что переменные связаны зависимостью

x k = a (t k - t ср)+ b + e k , k = 1,2,…,n,

где a и b – параметры, неизвестные статистику и подлежащие оцениванию, а e k – погрешности, искажающие зависимость. Среднее арифметическое моментов времени

t ср = (t 1 + t 2 +…+t n) / n

введено в модель для облегчения дальнейших выкладок.

Обычно оценивают параметры a и b линейной зависимости методом наименьших квадратов. Затем восстановленную зависимость используют для точечного и интервального прогнозирования.

Как известно, метод наименьших квадратов был разработан великим немецким математиком К. Гауссом в 1794 г. Согласно этому методу для расчета наилучшей функции, приближающей линейным образом зависимость x от t, следует рассмотреть функцию двух переменных


Оценки метода наименьших квадратов - это такие значения a* и b*, при которых функция f(a,b) достигает минимума по всем значениям аргументов.

Чтобы найти эти оценки, надо вычислить частные производные от функции f(a,b) по аргументам a и b, приравнять их 0, затем из полученных уравнений найти оценки: Имеем:

Преобразуем правые части полученных соотношений. Вынесем за знак суммы общие множители 2 и (-1). Затем рассмотрим слагаемые. Раскроем скобки в первом выражении, получим, что каждое слагаемое разбивается на три. Во втором выражении также каждое слагаемое есть сумма трех. Значит, каждая из сумм разбивается на три суммы. Имеем:


Приравняем частные производные 0. Тогда в полученных уравнениях можно сократить множитель (-2). Поскольку

(1)

уравнения приобретают вид

Следовательно, оценки метода наименьших квадратов имеют вид

(2)

В силу соотношения (1) оценку а* можно записать в более симметричном виде:

Эту оценку нетрудно преобразовать и к виду

Следовательно, восстановленная функция, с помощью которой можно прогнозировать и интерполировать, имеет вид

x*(t) = a*(t - t ср)+ b*.

Обратим внимание на то, что использование t ср в последней формуле ничуть не ограничивает ее общность. Сравним с моделью вида

x k = c t k + d + e k , k = 1,2,…,n.

Ясно, что

Аналогичным образом связаны оценки параметров:

Для получения оценок параметров и прогностической формулы нет необходимости обращаться к какой-либо вероятностной модели. Однако для того, чтобы изучать погрешности оценок параметров и восстановленной функции, т.е. строить доверительные интервалы для a*, b* и x*(t), подобная модель необходима.

Непараметрическая вероятностная модель. Пусть значения независимой переменной t детерминированы, а погрешности e k , k = 1,2,…,n, - независимые одинаково распределенные случайные величины с нулевым математическим ожиданием и дисперсией

неизвестной статистику.

В дальнейшем неоднократно будем использовать Центральную Предельную Теорему (ЦПТ) теории вероятностей для величин e k , k = 1,2,…,n (с весами), поэтому для выполнения ее условий необходимо предположить, например, что погрешности e k , k = 1,2,…,n, финитны или имеют конечный третий абсолютный момент. Однако заострять внимание на этих внутриматематических "условиях регулярности" нет необходимости.

Асимптотические распределения оценок параметров. Из формулы (2) следует, что

(5)

Согласно ЦПТ оценка b* имеет асимптотически нормальное распределение с математическим ожиданием b и дисперсией

оценка которой приводится ниже.

Из формул (2) и (5) вытекает, что

Последнее слагаемое во втором соотношении при суммировании по i обращается в 0, поэтому из формул (2-4) следует, что

(6)

Формула (6) показывает, что оценка

является асимптотически нормальной с математическим ожиданием и дисперсией

Отметим, что многомерная нормальность имеет быть, когда каждое слагаемое в формуле (6) мало сравнительно со всей суммой, т.е.


Из формул (5) и (6) и исходных предположений о погрешностях вытекает также несмещенность оценок параметров.

Несмещенность и асимптотическая нормальность оценок метода наименьших квадратов позволяют легко указывать для них асимптотические доверительные границы (аналогично границам в предыдущей главе) и проверять статистические гипотезы, например, о равенстве определенным значениям, прежде всего 0. Предоставляем читателю возможность выписать формулы для расчета доверительных границ и сформулировать правила проверки упомянутых гипотез.

Асимптотическое распределение прогностической функции. Из формул (5) и (6) следует, что

т.е. рассматриваемая оценка прогностической функции является несмещенной. Поэтому

При этом, поскольку погрешности независимы в совокупности и

, то

Таким образом,

Встречаются такие ситуации, в которых случайная изменчивость была представлена одной-двумя случайными пе­ременными, признаками.

Например, при исследовании статистической совокупности людей нас интересуют рост и вес. В этой ситуации, сколько бы людей в статистиче­ской совокупности ни было, мы всегда можем построить диаграмму рассея­ния и увидеть всю картину в целом. Однако если признаков три, например, добавляется признак - возраст человека, тогда диаграмма рассеяния долж­на быть построена в трехмерном пространстве. Представить совокупность точек в трехмерном пространстве уже довольно затруднительно.

В реально­сти на практике каждое наблюдение представляется не одним-двумя-тремя числами, а некоторым заметным набором чисел, которые описывают де­сятки признаков. В этой ситуации для построения диаграммы рассеяния потребовалось бы рассматривать многомерные пространства.

Раздел статистики, посвященный исследованиям экспе­риментов с многомерными наблюдениями, называется многомерным стати­стическим анализом.

Измерение сразу нескольких признаков (свойств объекта) в одном экс­перименте в общем более естественно, чем измерение какого-либо одного, двух. Поэтому потенциально многомерный статистический анализ имеет широкое поле для применения.

К многомерному статистическому анализу относят следую­щие разделы:

Факторный анализ;

Дискриминантный анализ;

Кластерный анализ;

Многомерное шкалирование;

Методы контроля качества.

Факторный анализ

При исследовании сложных объектов и систем (например, в психологии, биологии, социологии и т. д.) величины (факторы), определяющие свойства этих объектов, очень часто невозможно измерить непосредственно, а ино­гда неизвестно даже их число и содержательный смысл. Но для измерения могут быть доступны иные величины, так или иначе зависящие от инте­ресующих факторов. При этом когда влияние неизвестного интересующего нас фактора проявляется в нескольких измеряемых признаках, эти призна­ки могут обнаруживать тесную связь между собой и общее число факторов может быть гораздо меньше, чем число измеряемых переменных.

Для обнаружения факторов, влияющих на измеряемые переменные, ис­пользуются методы факторного анализа.

Примером применения факторного анализа может служить изучение свойств личности на основе психологических тестов. Свойства личности не поддаются прямому измерению, о них можно судить только по поведе­нию человека или характеру ответов на те или иные вопросы. Для объяс­нения результатов опытов их подвергают факторному анализу, который и позволяет выявить те личностные свойства, которые оказывают влияние на поведение испытуемых индивидуумов.


В основе различных моделей факторного анализа лежит следующая ги­потеза: наблюдаемые или измеряемые параметры являются лишь косвенны­ми характеристиками изучаемого объекта или явления, в действительности существуют внутренние (скрытые, латентные, не наблюдаемые непосред­ственно) параметры и свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято на­зывать факторами.

Задачей факторного анализа является представление наблюдаемых параметров в виде линейных комбинаций факторов и, быть может, некоторых дополнительных, несущественных возмущений.

Первый этап факторного анализа, как правило, – это выбор новых признаков, которые являются линейными комбинациями прежних и «вби­рают» в себя большую часть общей изменчивости наблюдаемых данных, а потому передают большую часть информации, заключенной в первоначаль­ных наблюдениях. Обычно это осуществляется с помощью метода главных компонент, хотя иногда используют и другие приемы (метод максимального правдоподобия).

Метод главных компонент сводится к выбору новой ортогональной си­стемы координат в пространстве наблюдений. В качестве первой главной компоненты избирают направление, вдоль которого массив наблюдений имеет наибольший разброс, выбор каждой последующей главной компонен­ты происходит так, чтобы разброс наблюдений был максимальным и чтобы эта главная компонента была ортогональна другим главным компонентам, выбранным ранее. Однако факторы, полученные методом главных компо­нент, обычно не поддаются достаточно наглядной интерпретации. Поэтому следующий шаг факторного анализа - преобразование, вращение факторов для облегчения интерпретации.

Дискриминантный анализ

Пусть имеется совокупность объектов, разбитая на несколько групп, и для каждого объекта можно определить, к какой группе он относится. Для каждого объекта имеются измерения нескольких количественных характе­ристик. Необходимо найти способ, как на основании этих характеристик можно узнать группу, к которой относится объект. Это позволит указывать группы, к которым относятся новые объекты той же совокупности. Для решения поставленной задачи применяются методы дискриминантного анализа.

Дискриминантный анализ - это раздел статистики, содержанием которого является разработка методов решения задач различения (дискриминации) объектов наблюдения по определенным признакам.

Рассмотрим некоторые примеры.

Дискриминантный анализ оказывается удобным при обработке ре­зультатов тестирования отдельных лиц, когда дело касается приема на ту или иную должность. В этом случае необходимо всех кандида­тов разделить на две группы: «подходит» и «не подходит».

Использование дискриминантного анализа возможно банковской ад­министрацией для оценки финансового состояния дел клиентов при выдаче им кредита. Банк по ряду признаков классифицирует их на надежных и ненадежных.

Дискриминантный анализ может быть привлечен в качестве метода разбиения совокупности предприятий на несколько однородных групп по значениям каких-либо показателей производственно-хозяйствен­ной деятельности.

Методы дискриминантного анализа позволяют строить функции изме­ряемых характеристик, значения которых и объясняют разбиение объектов на группы. Желательно, чтобы этих функций (дискриминантных призна­ков) было немного. В этом случае результаты анализа легче содержательно толковать.

Благодаря своей простоте особую роль играет линейный дискриминант­ный анализ, в котором классифицирующие признаки выбираются как ли­нейные функции от первичных признаков.

Кластерный анализ

Методы кластерного анализа позволяют разбить изучаемую совокуп­ность объектов на группы «схожих» объектов, называемых кластерами.

Слово кластер английского происхождения - cluster переводится как кисть, пучок, группа, рой, скопление.

Кластерный анализ решает следующие задачи:

Проводит классификацию объектов с учетом всех тех признаков, которые характеризуют объект. Сама возможность классификации продвигает нас к более углубленному пониманию рассматриваемой совокупности и объектов, входящих в нее;

Ставит задачу проверки наличия априорно заданной структуры или классификации в имеющейся совокупности. Такая проверка дает воз­можность воспользоваться стандартной гипотетико-дедуктивной схе­мой научных исследований.

Большинство методов кластеризации (иерархической группы) являются агломеративными (объединительными) - они начинают с создания эле­ментарных кластеров, каждый из которых состоит ровно из одного исходно­го наблюдения (одной точки), а на каждом последующем шаге происходит объединение двух наиболее близких кластеров в один.

Момент остановки этого процесса может задаваться исследователем (на­пример, указанием требуемого числа кластеров или максимального рассто­яния, при котором достигнуто объединение).

Графическое изображение процесса объединения кластеров может быть получено с помощью дендрограммы - дерева объединения кластеров.

Рассмотрим следующий пример. Проведем классификацию пяти предприятий, каждое из которых характеризуется тремя переменными:

х 1 – среднегодовая стоимость основных производственных фондов, млрд руб.;

х 2 – материальные затраты на 1 руб. произведенной продукции, коп.;

х 3 – объем произведенной продукции, млрд руб.

Многомерный статистический анализ применяют при решении следующих задач:

  • * исследование зависимости между признаками;
  • * классификация объектов или признаков, заданных векторами;
  • * снижение размерности пространства признаков.

При этом результат наблюдений - вектор значений фиксированного числа количественных и иногда качественных признаков, измеренных у объекта. Количественный признак - признак наблюдаемой единицы, который можно непосредственно выразить числом и единицей измерения. Количественный признак противопоставляется качественному - признаку наблюдаемой единицы, определяемому отнесением к одной из двух или более условных категорий (если имеется ровно две категории, то признак называется альтернативным). Статистический анализ качественных признаков - часть статистики объектов нечисловой природы. Количественные признаки делятся на признаки, измеренные в шкалах интервалов, отношений, разностей, абсолютной.

А качественные - на признаки, измеренные в шкале наименований и порядковой шкале. Методы обработки данных должны быть согласованы со шкалами, в которых измерены рассматриваемые признаки.

Целями исследования зависимости между признаками являются доказательство наличия связи между признаками и изучение этой связи. Для доказательства наличия связи между двумя случайными величинами Х и У применяют корреляционный анализ. Если совместное распределение Х и У является нормальным, то статистические выводы основывают на выборочном коэффициенте линейной корреляции, в остальных случаях используют коэффициенты ранговой корреляции Кендалла и Спирмена, а для качественных признаков - критерий хи-квадрат.

Регрессионный анализ применяют для изучения функциональной зависимости количественного признака У от количественных признаков x(1), x(2), … , x(k). Эту зависимость называют регрессионной или, кратко, регрессией. Простейшая вероятностная модель регрессионного анализа (в случае k = 1) использует в качестве исходной информации набор пар результатов наблюдений (xi, yi), i = 1, 2, … , n, и имеет вид

yi = axi + b + еi, i = 1, 2, … , n,

где еi - ошибки наблюдений. Иногда предполагают, что еi - независимые случайные величины с одним и тем же нормальным распределением N(0, у2). Поскольку распределение ошибок наблюдения обычно отлично от нормального, то целесообразно рассматривать регрессионную модель в непараметрической постановке, т.е. при произвольном распределении еi.

Основная задача регрессионного анализа состоит в оценке неизвестных параметров а и b, задающих линейную зависимость y от x. Для решения этой задачи применяют разработанный еще К.Гауссом в 1794 г. метод наименьших квадратов, т.е. находят оценки неизвестных параметров моделиa и b из условия минимизации суммы квадратов

по переменным а и b.

Дисперсионный анализ применяют для изучения влияния качественных признаков на количественную переменную. Например, пусть имеются k выборок результатов измерений количественного показателя качества единиц продукции, выпущенных на k станках, т.е. набор чисел (x1(j), x2(j), … , xn(j)), где j - номер станка, j = 1, 2, …, k, а n - объем выборки. В распространенной постановке дисперсионного анализа предполагают, что результаты измерений независимы и в каждой выборке имеют нормальное распределение N(m(j), у2) с одной и той же дисперсией.

Проверка однородности качества продукции, т.е. отсутствия влияния номера станка на качество продукции, сводится к проверке гипотезы

H0: m(1) = m(2) = … = m(k).

В дисперсионном анализе разработаны методы проверки подобных гипотез.

Гипотезу Н0 проверяют против альтернативной гипотезы Н1, согласно которой хотя бы одно из указанных равенств не выполнено. Проверка этой гипотезы основана на следующем «разложении дисперсий», указанном Р.А.Фишером:

где s2 - выборочная дисперсия в объединенной выборке, т.е.

Таким образом, первое слагаемое в правой части формулы (7) отражает внутригрупповую дисперсию. Наконец, - межгрупповая дисперсия,

Область прикладной статистики, связанную с разложениями дисперсии типа формулы (7), называют дисперсионным анализом. В качестве примера задачи дисперсионного анализа рассмотрим проверку приведенной выше гипотезы Н0 в предположении, что результаты измерений независимы и в каждой выборке имеют нормальное распределение N(m(j), у2) с одной и той же дисперсией. При справедливости Н0 первое слагаемое в правой части формулы (7), деленное на у2, имеет распределение хи-квадрат с k(n-1) степенями свободы, а второе слагаемое, деленное на у2, также имеет распределение хи-квадрат, но с (k-1) степенями свободы, причем первое и второе слагаемые независимы как случайные величины. Поэтому случайная величина

имеет распределение Фишера с (k-1) степенями свободы числителя и k(n-1) степенями свободы знаменателя. Гипотеза Н0 принимается, если F < F1-б, и отвергается в противном случае, где F1-б - квантиль порядка 1-б распределения Фишера с указанными числами степеней свободы. Такой выбор критической области определяется тем, что при Н1 величина F безгранично увеличивается при росте объема выборок n. Значения F1-б берут из соответствующих таблиц.

Разработаны непараметрические методы решения классических задач дисперсионного анализа, в частности, проверки гипотезы Н0.

Следующий тип задач многомерного статистического анализа - задачи классификации. Они делятся на три принципиально различных вида - дискриминантный анализ, кластер-анализ, задачи группировки.

Задача дискриминантного анализа состоит в нахождении правила отнесения наблюдаемого объекта к одному из ранее описанных классов. При этом объекты описывают в математической модели с помощью векторов, координаты которых - результаты наблюдения ряда признаков у каждого объекта. Классы описывают либо непосредственно в математических терминах, либо с помощью обучающих выборок. Обучающая выборка - это выборка, для каждого элемента которой указано, к какому классу он относится.

Рассмотрим пример применения дискриминантного анализа для принятия решений в технической диагностике. Пусть по результатам измерения ряда параметров продукции необходимо установить наличие или отсутствие дефектов. В этом случае для элементов обучающей выборки указаны дефекты, обнаруженные в ходе дополнительного исследования, например, проведенного после определенного периода эксплуатации. Дискриминантный анализ позволяет сократить объем контроля, а также предсказать будущее поведение продукции. Дискриминантный анализ сходен с регрессионным - первый позволяет предсказывать значение качественного признака, а второй - количественного. В статистике объектов нечисловой природы разработана математическая схема, частными случаями которой являются регрессионный и дискриминантный анализы.

Кластерный анализ применяют, когда по статистическим данным необходимо разделить элементы выборки на группы. Причем два элемента группы из одной и той же группы должны быть «близкими» по совокупности значений измеренных у них признаков, а два элемента из разных групп должны быть «далекими» в том же смысле. В отличие от дискриминантного анализа в кластер-анализе классы не заданы, а формируются в процессе обработки статистических данных. Например, кластер-анализ может быть применен для разбиения совокупности марок стали (или марок холодильников) на группы сходных между собой.

Другой вид кластер-анализа - разбиение признаков на группы близких между собой. Показателем близости признаков может служить выборочный коэффициент корреляции. Цель кластер-анализа признаков может состоять в уменьшении числа контролируемых параметров, что позволяет существенно сократить затраты на контроль. Для этого из группы тесно связанных между собой признаков (у которых коэффициент корреляции близок к 1 - своему максимальному значению) измеряют значение одного, а значения остальных рассчитывают с помощью регрессионного анализа.

Задачи группировки решают тогда, когда классы заранее не заданы и не обязаны быть «далекими» друг от друга. Примером является группировка студентов по учебным группам. В технике решением задачи группировки часто является параметрический ряд - возможные типоразмеры группируются согласно элементам параметрического ряда. В литературе, нормативно-технических и инструктивно-методических документах по прикладной статистике также иногда используется группировка результатов наблюдений (например, при построении гистограмм).

Задачи классификации решают не только в многомерном статистическом анализе, но и тогда, когда результатами наблюдений являются числа, функции или объекты нечисловой природы. Так, многие алгоритмы кластер-анализа используют только расстояния между объектами. Поэтому их можно применять и для классификации объектов нечисловой природы, лишь бы были заданы расстояния между ними. Простейшая задача классификации такова: даны две независимые выборки, требуется определить, представляют они два класса или один. В одномерной статистике эта задача сводится к проверке гипотезы однородности.

Третий раздел многомерного статистического анализа - задачи снижения размерности (сжатия информации). Цель их решения состоит в определении набора производных показателей, полученных преобразованием исходных признаков, такого, что число производных показателей значительно меньше числа исходных признаков, но они содержат возможно большую часть информации, имеющейся в исходных статистических данных. Задачи снижения размерности решают с помощью методов многомерного шкалирования, главных компонент, факторного анализа и др. Например, в простейшей модели многомерного шкалирования исходные данные - попарные расстояния между k объектами, а цель расчетов состоит в представлении объектов точками на плоскости. Это дает возможность в буквальном смысле слова увидеть, как объекты соотносятся между собой. Для достижения этой цели необходимо каждому объекту поставить в соответствие точку на плоскости так, чтобы попарные расстояния sij между точками, соответствующими объектам с номерами i и j, возможно точнее воспроизводили расстояния сijмежду этими объектами. Согласно основной идее метода наименьших квадратов находят точки на плоскости так, чтобы величина

достигала своего наименьшего значения. Есть и многие другие постановки задач снижения размерности и визуализации данных.

вероятность математический статистика качество

МНОГОМЕРНЫЙ СТАТИСТИЧЕСКИЙ АНАЛИЗ

Раздел математич. статистики, посвященный математич. методам построения оптимальных планов сбора, систематизации и обработки многомерных статистич. данных, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого многомерного признака и предназначенным для получения научных и практич. выводов. Под многомерным признаком понимается р-мерный показателей (признаков, переменных) среди к-рых могут быть: количественные, т. е. скалярно измеряющие в определенной шкале проявления изучаемого свойства объекта, п о-рядковые (или ординальные), т. е. позволяющие упорядочивать анализируемые объекты по степени проявления в них изучаемого свойства; и классификационные (или номинальные), т. е. позволяющие разбивать исследуемую совокупность объектов на не поддающиеся упорядочиванию однородные (по анализируемому свойству) классы. Результаты измерения этих показателей

на каждом из побъектов исследуемой совокупности образуют многомерных наблюдений, или исходный массив многомерных данных для проведения М. с. а. Значительная часть М. с. а. обслуживает ситуации, в к-рых исследуемый многомерный признак интерпретируется как многомерная и соответственно последовательность многомерных наблюдений (1) - как из генеральной совокупности. В этом случае выбор методов обработки исходных статистич. данных и анализ их свойств производится на основе тех или иных допущений относительно природы многомерного (совместного) закона распределения вероятностей

Многомерный статистический анализ многомерных распределений и их основных характеристик охватывает лишь ситуации, в к-рых обрабатываемые наблюдения (1) имеют вероятностную природу, т. е. интерпретируются как выборка из соответствующей генеральной совокупности. К основным задачам этого подраздела относятся: статистич. оценивание исследуемых многомерных распределений, их основных числовых характеристик и параметров; исследование свойств используемых статистич. оценок; исследование распределений вероятностей для ряда статистик, с помощью к-рых строятся статистич. критерии проверки различных гипотез о вероятностной природе анализируемых многомерных данных. Основные результаты относятся к частному случаю, когда исследуемый признак подчинен многомерному нормальному закону распределения функция плотности к-рого задается соотношением

где - вектор математич. ожиданий компонент случайной величины , т. е.- ковариационная матрица случайного вектора , т. е.- ковариации компонент вектора (рассматривается невырожденный случай, когда ; в противном случае, т. е. при ранге , все результаты остаются справедливыми, но применительно к подпространству меньшей размерности , в к-рой оказывается сосредоточенным исследуемого случайного вектора ).

Так, если (1) - последовательность независимых наблюдений, образующих случайную выборку из то оценками максимального правдоподобия для параметров и , участвующих в (2), являются соответственно статистики (см. , )

причем случайный вектор подчиняется р-мерному нормальному закону и не зависит от , а совместное распределение элементов матрицы описывается т. н. распределением Уиша р-т а (см. ), к-рого

В рамках этой же схемы исследованы распределения и моменты таких выборочных характеристик многомерной случайной величины, как коэффициенты парной, частной и множественной корреляции, обобщенная (т. е. ), обобщенная -статистике Хотеллинга (см. ). В частности (см. ), если определить в качестве выборочной ковариационной матрицы подправленную "на несмещенность" оценку , а именно:

то случайной величины стремится к при , а случайные величины

подчиняются F-распределениям с числами степеней свободы соответственно (р, п-р) и (р, п 1 +п 2 -р-1). В соотношении (7) п 1 и n 2 - объемы двух независимых выборок вида (1), извлеченных из одной и той же генеральной совокупности - оценки вида (3) и (4)-(5), построенные по i-й выборке, а

Общая выборочная ковариационная , построенная по оценкам и

Многомерный статистический анализ характера и структуры взаимосвязей компонент исследуемого многомерного признака объединяет в себе понятия и результаты, обслуживающие такие методы и модели М. с. а., как множественная , многомерный дисперсионный анализ и ковариационный анализ, факторный анализ и метод главных компонент, анализ канонич. корреляций. Результаты, составляющие содержание этого подраздела, могут быть условно разделены на два основных типа.

1) Построение наилучших (в определенном смысле) статистич. оценок для параметров упомянутых моделей и анализ их свойств (точности, а в вероятностной постановке - законов их распределения, доверительных: областей и т. д.). Так, пусть исследуемый многомерный признак интерпретируется как векторная случайная , подчиненная р-мерному нормальному распределению , и расчленен на два подвектора--столбца и размерности qи р-qсоответственно. Это определяет и соответствующее расчленение вектора математич. ожиданий , теоретической и выборочной ковариационных матриц , а именно:

Тогда (см. , ) подвектора (при условии, что второй подвектор принял фиксированное значение ) будет также нормальным ). При этом оценками максимального правдоподобия. для матриц регрессионных коэффициентов и ковариацин этой классической многомерной модели множественной регрессии

будут взаимно независимые статистики соответственно

здесь распределение оценки подчинено нормальному закону , а оценки п - закону Уишарта с параметрами и (элементы ковариационной матрицы выражаются в терминах элементов матрицы ).

Основные результаты по построению оценок параметров и исследованию их свойств в моделях факторного" анализа, главных компонент и канонич. корреляций относятся к анализу вероятностно-статистич. свойств собственных (характеристических) значений и векторов различных выборочных ковариационных матриц.

В схемах, не укладывающихся в рамки классич. нормальной модели и тем более в рамки какой-либо вероятностной модели, основные результаты относятся к построению алгоритмов (и исследованию их свойств) вычисления оценок параметров, наилучших с точки зрения нек-poro экзогенно заданного функционала качества (пли адекватности) модели.

2) Построение статистич. критериев для проверки различных гипотез о структуре исследуемых взаимосвязей. В рамках многомерной нормальной модели (последовательности наблюдений вида (1) интерпретируются как случайные выборки из соответствующих многомерных нормальных генеральных совокупностей) построены, напр., статистич. критерии для проверки следующих гипотез.

I. Гипотезы о равенстве вектора математич. ожиданий исследуемых показателей заданному конкретному вектору ; проверяется с помощью -статистики Хотеллинга с подстановкой в формулу (6)

II. Гипотезы о равенстве векторов математич. ожиданий в двух генеральных совокупностях (с одинаковыми, но неизвестными ковариационными матрицами), представленных двумя выборками; проверяется с помощью статистики (см. ).

III. Гипотезы о равенстве векторов математич. ожиданий в нескольких генеральных совокупностях (с одинаковыми, но неизвестными ковариационными матрицами), представленных своими выборками; проверяется с помощью статистики

в к-рой есть i-е р-мерное наблюдение в выборке объема , представляющей j-ю генеральную совокупность, а и - оценки вида (3), построенные соответственно отдельно по каждой из выборок и по объединенной выборке объема

IV. Гипотезы об эквивалентности нескольких нормальных генеральных совокупностей, представленных своими выборками проверяется с помощью статистики

в к-рой - оценка вида (4), построенная отдельно по наблюдениям j- йвыборки, j=1, 2, ... , k.

V. Гипотезы о взаимной независимости подвекторов-столбцов размерностей соответственно на к-рые расчленен исходный р-мерный вектор исследуемых показателей проверяется с помощью статистики

в к-рой и - выборочные ковариационные матрицы вида (4) для всего вектора и для его подвектора x (i) соответственно.

Многомерный статистический анализ геометрической структуры исследуемой совокупности многомерных наблюдений объединяет в себе понятия и результаты таких моделей и схем, как дискриминантный анализ, смеси вероятностных распределений, кластер-анализ и таксономия, многомерное шкалирование. Узловым во всех этих схемах является понятие расстояния (меры близости, меры сходства) между анализируемыми элементами. При этом анализируемыми могут быть как реальные объекты, на каждом из к-рых фиксируются значения показателей ,- тогда геометрич. образом i-го обследованного объекта будет точка в соответствующем р-мерном пространстве, так и сами показатели - тогда геометрич. образом l-го показателя будет точка в соответствующем n-мерном пространстве.

Методы и результаты дискриминантного анализа (см. , , ) направлены на следующей задачи. Известно о существовании определенного числа генеральных совокупностей и у исследователя имеется по одной выборке из каждой совокупности ("обучающие выборки"). Требуется построить основанное на имеющихся обучающих выборках наилучшее в определенном смысле классифицирующее правило, позволяющее приписать нек-рый новый элемент (наблюдение ) к своей генеральной совокупности в ситуации, когда исследователю заранее не известно, к какой из совокупностей этот элемент принадлежит. Обычно под классифицирующим правилом понимается последовательность действий: по вычислению скалярной функции от исследуемых показателей, по значениям к-рой принимается решение об отнесении элемента к одному из классов (построение дискриминантной функции); по упорядочению самих показателей по степени их информативности с точки зрения правильного отнесения элементов к классам; по вычислению соответствующих вероятностей ошибочной классификации.

Задача анализа смесей распределений вероятностей (см. ) чаще всего (но не всегда) возникает также в связи с исследованием "геометрической структуры" рассматриваемой совокупности. При этом понятие r-го однородного класса формализуется с помощью генеральной совокупности, описываемой нек-рым (как правило, унимодальным) законом распределения так что распределение общей генеральной совокупности, из к-рой извлечена выборка (1), описывается смесью распределений вида где p r - априорная вероятность (удельный элементов) r-го класса в общей генеральной совокупности. Задача состоит в "хорошем" статистич. оценивании (по выборке ) неизвестных параметров а иногда и к. Это, в частности, позволяет свести задачу классификации элементов к схеме дискриминантного анализа, хотя в данном случае отсутствовали обучающие выборки.

Методы и результаты кластер-анализа (классификации, таксономии, распознавании образов "без учителя", см. , , ) направлены на решение следующей задачи. Геометрич. анализируемой совокупности элементов задана либо координатами соответствующих точек (т. е. матрицей ... , п), либо набором геометрич. характеристик их взаимного расположения, напр, матрицей попарных расстояний . Требуется разбить исследуемую совокупность элементов на сравнительно небольшое (заранее известное или нет) классов так, чтобы элементы одного класса находились на небольшом расстоянии друг от друга, в то время как разные классы были бы по возможности достаточно взаимоудалены один от другого и не разбивались бы на столь же удаленные друг от друга части.

Задача многомерного шкалирования (см. ) относится к ситуации, когда исследуемая совокупность элементов задана с помощью матрицы попарных расстояний и заключается в приписывании каждому из элементов заданного числа (р)координат таким образом, чтобы структура попарных взаимных расстояний между элементами, измеренных с помощью этих вспомогательных координат, в среднем наименее отличались бы от заданной. Следует заметить, что основные результаты и методы кластер-анализа и многомерного шкалирования развиваются обычно без каких-либо допущении о вероятностной природе исходных данных.

Прикладное назначение многомерного статистического анализа состоит в основном в обслуживании следующих трех проблем.

Проблема статистического исследования зависимостей между анализируемыми показателями. Предполагая, что исследуемый набор статистически регистрируемых показателей xразбит, исходя из содержательного смысла этих показателей и окончательных целей исследования, на q-мернын подвектор предсказываемых (зависимых) переменных и (р-q)-мерный подвектор предсказывающих (независимых) переменных, можно сказать, что проблема состоит в определении на основании выборки (1) такой q-мерной векторной функции из класса допустимых решений F, к-рая давала бы наилучшую, в определенном смысле, аппроксимацию поведения подвектора показателей . В зависимости от конкретного вида функционала качества аппроксимации и природы,анализируемых показателей приходят к тем или иным схемам множественной регрессии, дисперсионного, ковариационного или конфлюентного анализа.

Проблема классификации элементов (объектов или показателей) в общей (нестрогой) постановке заключается в том, чтобы всю анализируемую совокупность элементов, статистически представленную в виде матрицы или матрицы разбить на сравнительно небольшое число однородных, в определенном смысле, групп . В зависимости от природы априорной информации и конкретного вида функционала, задающего критерий качества классификации, приходят к тем или иным схемам дискриминантного анализа, кластер-анализа (таксономии, распознавания образов "без учителя"), расщепления смесей распределений.

Проблема снижения размерности исследуемого факторного пространства и отбора наиболее информативных показателей заключается в определении такого набора сравнительно небольшого числа показателен найденного в классе допустимых преобразований исходных показателей на к-ром достигается верхняя нек-рой экзогенно заданной меры информативности m-мерной системы признаков (см. ). Конкретизация функционала, задающего меру автоинформативности (т. е. нацеленное на максимальное сохранение информации, содержащейся в статистич. массиве (1) относительно самих исходных признаков), приводит, в частности, к различным схемам факторного анализа и главных компонент, к методам экстремальной группировки признаков. Функционалы, задающие меру внешней информативности, т. е. нацеленные на извлечение из (1) максимальной информации относительно нек-рых других, не содержащихся непосредственно в ж, показателен или явлений, приводят к различным методам отбора наиболее информативных показателей в схемах статистич. исследования зависимостей и дискриминантного анализа.

Основной математический инструментарий М. с. а. составляют специальные методы теории систем линейных уравнений и теории матриц (методы решения простой и обобщенной задачи о собственных значениях и векторах; простое обращение и псевдообращение матриц; процедуры диагонализации матриц и т. д.) и нек-рые оптимизационные алгоритмы (методы покоординатного спуска, сопряженных градиентов, ветвей и границ, различные версии случайного поиска и стохастич. аппроксимации и т. д.).

Лит. : Андерсон Т., Введение в многомерный статистический анализ, пер. с англ., М., 1963; Кендалл М. Дж.., Стьюарт А., Многомерный статистический анализ и временные ряды, пер. с англ., М., 1976; Большев Л. Н., "Bull. Int. Stat. Inst.", 1969, № 43, p. 425-41; Wishаrt .J., "Biometrika", 1928, v. 20A, p. 32-52: Hotelling H., "Ann. Math. Stat.", 1931, v. 2, p. 360-78; [в] Кruskal J. В., "Psychometrika", 1964, v. 29, p. 1-27; Айвазян С. А., Бежаева 3. И., . Староверов О. В., Классификация многомерных наблюдений, М., 1974.

С. А. Айвазян.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Справочник технического переводчика

Раздел статистики математической (см.), посвященный математич. методам, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого многомерного признака (см.) и предназначенным для получения научн. и практич.… …

В широком смысле раздел математической статистики (См. Математическая статистика), объединяющий методы изучения статистических данных, относящихся к объектам, которые характеризуются несколькими качественными или количественными… … Большая советская энциклопедия

АНАЛИЗ МНОГОМЕРНЫЙ СТАТИСТИЧЕСКИЙ - раздел математической статистики, предназначенный для анализа связей между тремя и более переменными. Можно условно выделить три основных класса задач А.М.С. Это исследование структуры связей между переменными и снижение размерности пространства … Социология: Энциклопедия

АНАЛИЗ КОВАРИАЦИОННЫЙ - – сово­купность методов математич. статистики, отно­сящихся к анализу моделей зависимости среднего значения нек рой случайной величины Y от набора неколичественных факторов F и одновременно от набора количественных факторов X. По отношению к Y… … Российская социологическая энциклопедия

Раздел математич. статистики, содержанием к рого является разработка и исследование статистич. методов решения следующей задачи различения (дискриминации): основываясь на результатах наблюдений, определить, какой из нескольких возможных… … Математическая энциклопедия, Орлова Ирина Владленовна, Концевая Наталья Валерьевна, Турундаевский Виктор Борисович. Книга посвящена многомерному статистическому анализу (МСА) и организации вычислений по МСА. Для реализации методов многомерной статистики используется программаобработки статистической…


Поделиться