Technology of masonry work from porous POROTHERM blocks. House made of large-format porous ceramic blocks Ceramic blocks and ventilation gap

A single-layer ceramic wall has significant advantages in front of double-layer walls. Porous ceramic blocks are very durable material, the service life of a wall made of such material is estimated by experts to be 100 years or more.

If directly compared with two-layer wall structures, then they major renovation will be required very soon, the forecast period is 30 - 35 years, and even 20 years for low-quality polystyrene. Ordinary cheap insulation will fail during this period and will basically lose its unique properties.

Other advantages of a single layer ceramic wall

A single-layer ceramic wall is much more resistant to all kinds of damage than a two-layer one. Violations facade finishing will not lead to the same consequences as if they disturbed the finish over mineral wool or polystyrene foam.
Also:

  • There is no risk of moisture if construction technology is violated or layers are damaged. Indeed, if you violate the principles of insulation in double-layer walls, you can easily over-moisten the structure.
  • A single-layer wall is generally cheaper. If the quality of the materials is comparable, then in any case, a single-layer structure will have a lower final price.
  • easier, faster to build. During construction, simplicity and manufacturability often dictate design features. You need to look for insulation specialists to do the second layer correctly, etc. These questions simply disappear.

What is known

From blocks of porous ceramics it is possible to build a single-layer wall with satisfactory heat-saving properties for moderate and warm climates.

But in cold regions, a single-layer block wall cannot provide the necessary thermal insulation.

There it is necessary (it becomes more profitable) to build two-layer walls, in which the load-bearing layer is covered with insulation.

Heat-saving properties of ceramic blocks

A reduction in thermal conductivity in products made of porous ceramics is achieved due to the presence of many closed cavities with air. The production of ceramic blocks is in many ways similar to the production of ordinary bricks, but components are added to the material, which burn when fired, forming pores.

Hollow blocks and bricks with large internal cavities are formed from such a mass. As a result, the thermal conductivity coefficient of the ceramic block is 0.15 - 0.17 W/mK, and for hollow brick- 0.2 W/mK.

Humidity affects these values, but to a much lesser extent than for aerated concrete blocks, which have less porosity and a larger number of pores.

How to make the entire masonry and wall warm

Ceramic blocks high precision manufacturing, with dimensional inaccuracy in height no more than 1 mm (polished), can be laid on a thin layer of glue or on a special adhesive foam.

In these cases, the thermal conductivity coefficient of the finished masonry made of ceramic blocks does not increase significantly compared to the blocks themselves.

The masonry and wall may lose possible heat-saving properties if only a thick layer of ordinary heavy mortar is used. Then the large-scale cold bridges that form simply neutralize the achievements of warm ceramics.

Selection of blocks and mortar based on heat loss

Blocks are usually produced in lengths of 25, 38, 44 and 51 cm. They are placed across the wall, with the embossed side surface to the adjacent blocks. Then the thickness of the wall is equal to the length of the block.

Let's look at an example. For the Moscow region, the required heat transfer resistance of the walls of a house is no less than 3.15 m2*K/W. Approximately the same value is for masonry made of ceramic blocks 51 cm thick, made with heat-saving mortar or glue.

But if you use ordinary cement-lime mortar, then the heat transfer resistance of the wall will be 2.7 - 2.8 m2*K/W.

For the construction of private houses up to 3 floors in non-cold climates, it is more profitable to use blocks instead of bricks, the masonry of which is more expensive and much colder.

Reduce the number of additional blocks

Vertical joints between blocks with a tongue-and-groove side surface are not filled with mortar. Their filling is necessary in the case of using additional blocks with smooth edges or bricks.

A large number of such blocks can be in corners, wall bends, and near openings.
If the vertical seams between the blocks are filled with mortar, the thermal conductivity of the wall will increase. The number of such places should be minimized.

House designs made from ceramic blocks provide for distances that are multiples of an integer number of blocks, so the use of additional ones is kept to a minimum.
To increase heat savings, it is recommended to build a house in accordance with the project.

What size ceramic blocks to choose

A wall made of ceramic blocks with unfilled vertical joints must be plastered on both sides to reduce air permeability.

On the outside, only a special vapor-permeable plaster layer should be used. You can further increase the heat-saving properties of the wall if you apply warm plaster on the outside with a layer of 4 cm thick.

A popular technology is in which a wall made of ceramic blocks is lined with hollow façade bricks. The laying is carried out without leaving an air gap. The wall thickness increases by at least 12 cm. At the same time, the thermal insulation characteristics also increase slightly.

Therefore, for the southern regions and Ukraine, ceramic blocks 38 cm long (masonry thickness 38 cm) are more often used, plastered on the outside with a layer of warm plaster 4-7 cm, or lined with hollow facade bricks. Such a wall will have for regions with mild winters satisfactory heat-saving properties.

Suitable wall width

If the heat transfer resistance of the wall turns out to be lower than the recommendations of SNiP 02.23.2003, then it is possible to compensate for the deficiency and bring the total heat loss of the building in accordance with the requirements of the standards by increasing the insulation of other building structures, in accordance with design solutions.

It should be taken into account that a wide wall places increased demands on the strength and size of the foundation.

A wall made of porous ceramic blocks can be wider than the base by no more than 20%, and up to 30% when confirmed by strength calculations in the project.

It is not economically profitable to build a ceramic wall wider than 63 cm (51 + 12), since a significant amount of expensive durable material (porous ceramics) will be spent on insulation, which is not needed due to strength requirements.

In fact, this is the condition for switching to the construction of two-layer walls with a narrow load-bearing layer in the northern regions.

Construction of wall insulation made of ceramic blocks, thermal insulation measures in various places of masonry

Reinforced concrete and metal elements structures that have much greater thermal conductivity than the wall itself, so they are necessarily fenced from the street side with an additional layer of insulation.

  • Above window or doorways Crossbars are installed - reinforced concrete lintel beams. These are standard elements specifically designed for openings in wide walls. WITH outside they are fenced with a layer of at least 10 cm mineral wool And thin layer ceramics.
  • The ceilings on the floors and the mauerlat timber for the roof must rest on a reinforced concrete frame made as one-piece design above all load-bearing walls at floor level, and evenly distributing loads on the walls. This reinforced concrete frame (concrete belt) is fenced on the street side with at least 10 cm of moderately hard mineral wool insulation and additional ceramic blocks.
  • The internal load-bearing walls are connected with masonry to the external walls. Blocks interior walls on the street side they are fenced in the same way.
  • Reinforced concrete plinth on which load-bearing walls rest (masonry made of ceramic blocks can only rest on a monolithic strip foundation sufficient rigidity according to the design), the outside is enclosed with extruded polystyrene foam insulation (usually at least 8 cm thick according to calculation) or foam glass with a thickness of 12 cm or more.

How to Insulate Block Walls in Cold Climates

In cold climates, walls made of porous ceramics of a reasonable thickness cannot meet the requirements for heat conservation, so they must be insulated with an additional (second) layer of insulation.

In this case, the supporting layer of porous ceramics is made relatively narrow; usually the width of the masonry is from 25 cm. More vapor-permeable insulation layers made of mineral wool or low-density aerated concrete are used as insulation for the blocks.

The use of vapor barrier materials - polystyrene foam, extruded polystyrene foam, foam glass - creates a risk of wetting the load-bearing wall itself.

What insulation to use

The following insulation materials are used to insulate walls made of ceramic blocks.

  • Rigid mineral wool slabs with a density of 125 kg/m3 and more. They are glued to the masonry and plastered on top with a thin layer of vapor-transparent plaster.
  • Flexible mineral wool boards with a density of 45 - 80 kg/m3. They are placed under the façade trim lathing, covered with a vapor diffusion membrane, and additionally secured with dowels.
  • Rigid slabs of aerated concrete with a density of 100 - 200 kg/m3.

Recently, they have learned to make low-density autoclaved aerated concrete with a thermal conductivity coefficient of 0.05 - 0.06 W/mOK and sufficient structural strength, class B1.0 (compressive strength from 10 kg/m3, vapor permeability coefficient 0.28 mg/(m *year*Pa).

How to make insulation

The slabs are laid in masonry on the foundation (starting strip) and glued to the load-bearing layer, plastered with vapor-transparent plaster with fiberglass mesh.

These insulation materials can be lined with ceramic bricks, leaving a ventilation gap, and the wall will already have three layers, since the brick layer will be self-supporting and rests on the foundation.

Between the insulation and brick cladding left ventilation gap and ensures upward air movement similar to a ventilated façade.

When choosing insulation for walls made of ceramic blocks, the main factor remains the durability of the material.

For tough mineral wool slabs from famous manufacturers The service life is set at 35 years. But for aerated concrete blocks this figure is higher. Therefore, recently, aerated concrete has become a significant alternative to mineral wool.

Time is the most impartial judge, and it clearly shows that the outer walls of buildings, finished ceramic materials, are practically not subject to destruction and retain their original appearance for many decades. Therefore, today manufacturers offer us not only traditional tiles and bricks.

One of the new products that recently appeared on the building materials market is a porous ceramic block with cladding. What is this material, what are its advantages and disadvantages?

You will learn about this and much more by reading the information we offer, as well as by watching the video in this article.

If ceramic facing materials try to somehow classify, then two main categories can be distinguished. The first is materials mounted on finished walls: tiles for adhesive cladding (see Cladding with ceramic tiles: a job that anyone can handle), panels for arranging ventilated facades (see Cladding a house with external panels: choosing).

The second category includes materials that are both finishing and structural. This different kinds ceramic bricks and ceramic blocks on the cladding, which will be discussed now.

It is possible to finish walls with such materials only during the masonry process, otherwise it would be necessary to top up the old one or build a new foundation. The reason for this is the significant weight and large format of the cladding elements - and this can equally be both a disadvantage and an advantage.

Advantages of structural ceramics

We cannot deny the advantages of clay brick, which has been used for centuries to build walls and has long become a classic in construction. But this method has one significant drawback - it takes a lot of time, and this cannot but affect the cost of objects.

So:

  • In this regard, facing ceramic blocks have huge advantage in front of the brick. A full-size block has an average format of 380*250*219 mm, which is double more sizes bricks Accordingly, the speed of construction of enclosing structures also doubles - and this is at least.
  • It is very convenient to work with such material, especially since where the wall thickness should be 1.5 bricks, it is enough to lay one block. For those who are going to build a house with their own hands, this is a great advantage: the geometry of the masonry is ideal even for those who do not have mason qualifications and are taking on such work for the first time.

  • Ceramic blocks are called porous not only because there are voids in the structure of the products. It's all about the technology of their manufacture. The raw material for the production of blocks consists not only of sand and clay, it also contains filler in the form of small sawdust. During the firing process, the wood filler burns out, forming pores in the material itself. And the voids and corrugated sides of the finished products are obtained by passing through vacuum presses.
  • The presence of closed cavities, which we see in the photo, significantly reduces the thermal conductivity of the material, and this indicator for porous blocks is many times higher than for traditional bricks. For this reason, they are also called warm ceramics. It is clear that this is a godsend for housing construction, since walls built from such blocks do not require insulation.
  • Moreover, the presence of pores and voids does not in any way reduce the compressive strength of the material - let alone sound insulation! Everyone knows that the porous structure of materials provides excellent sound absorption. The undoubted advantages of warm ceramics include hundreds of freeze-thaw cycles, as well as low water absorption (within 6-12%) and high fire resistance.

The price of a ceramic block is on average 110 rubles. a piece. The cost of a brick, even an ordinary one, is at least 15 rubles; facing brick costs 18-21 rubles. But there are only 40 blocks in one cubic meter, whereas single bricks there are 510 pieces in a cube - the mathematics is simple, and everyone can calculate which is more profitable.

Well, the instructions in the next chapter will tell you about the technical side of building walls from ceramic blocks.

Features of masonry work

Thanks to the large format of the ceramic blocks, the joints between them occupy only five percent of the wall area. Compared to brickwork, this is not much, but this may be quite enough for the wall to lose a significant part of the heat. For this reason, for the installation of porous cement-sand mortar not used.

Masonry mortar

To install porous blocks - and not only ceramic, but also cellular concrete - it is necessary to use mixtures that contain a heat-insulating filler. These are natural raw materials: perlite and vermiculite, which have excellent thermal insulation qualities.

In addition, warm solutions contain fiber fiber (a reinforcing additive) and plasticizers that make the hardened seam impermeable to moisture.

  • As for reinforcing additives, their use does not allow the freshly applied mixture to settle into the cavity of the blocks, and the seams that have gained strength become more resistant to deformation. Modifying additives make the solution more plastic and significantly reduce its consumption.

  • Preparation of a solution from a dry mixture consists of only two operations: adding water (about 10 liters per bag) and mixing with a mixer or concrete mixer. The viability of the solution lasts approximately 2 hours, so make it immediately large volume doesn't make sense.
  • When the viscosity of the solution used increases, it is strictly forbidden to add water to it - just mix it in a container. The mixtures are sold dry, in 20 kg bags. This amount makes approximately 30 liters ready solution, and, given the thickness of the seam of 12 mm, it is enough for 1 m2 of masonry.

  • A bag of warm masonry mixture costs about 300 rubles, and this, of course, is a considerable expense. To reduce mortar consumption, as well as for reinforcing horizontal rows, many manufacturers recommend laying blocks on a fine-mesh fiberglass mesh.

It keeps the mixture from falling into the voids of the underlying blocks. There is one more important nuance: the solution entering the voids of the blocks displaces air from them, which reduces the resistance of the masonry to heat transfer. Therefore, a grid is needed, no matter how you look at it.

The feasibility of using ceramic stone

Ceramic blocks, or, as their name means, standard: ceramic stones- like a brick, they can be ordinary and front. Ordinary ones are used for the construction of walls, and front ones, respectively, for their parallel cladding.

This division does not mean at all that the strength of the front blocks is lower than that of ordinary ones - they can be used for the main masonry in the same way. Just due to the improved front surface, their cost is slightly higher.

So:

  • In principle, both of these materials are produced according to the same standards, and the calculation of wall thickness depends on the maximum winter temperatures in the region. Let’s say in the south, where the average winter temperature is -10 degrees, the thickness of the walls should be at least 380 mm, that is, one and a half brick lengths.
  • If walls are erected from ceramic blocks, then use blocks measuring 380*250*219 mm and lay them in one row. The largest standard size is 510*250*219 mm, it can also be mounted in one row, but in regions with winter temperatures of -20 degrees. In this case, blocks with a front finish are used.

  • But in the northern regions, where winter temperatures often exceed -40 degrees, the thickness of the brickwork should be 770 mm (three bricks + joints). There are no blocks of this size, and if necessary, the masonry is made up of ordinary blocks 510 mm long and facing blocks 250 mm long.
  • If such a wall is laid out of brick, a lot of material is wasted, and the load on the foundation is incredibly large. This leads to overspending not only wall materials, but also those that are used for the construction zero cycle building.

Note! In order to obtain at least some savings when constructing brick walls, well masonry methods are used, laying insulation in the resulting cavities, and widening the seams. But even all these methods together are unable to make masonry more than two bricks thick economically feasible.

  • That is why brick houses for the regions of the Far North it is very rare. With the advent of ceramic porous blocks, the situation has changed radically, and now northerners can also build prefabricated and warm houses from ceramics.
  • What simplifies masonry work most of all is the tongue-and-groove system for connecting blocks. This joining limits the displacement trajectory of the masonry elements relative to each other, therefore the curvature of the masonry, which differs brick walls, is basically impossible here.

  • Another huge advantage is that vertical joints do not need to be filled with mortar. Because exactly side faces the ridge is connected into a groove, there are no cold bridges in the masonry, which are always seams.

In the struggle for buyers, many manufacturers offer not only standard full-size blocks, but also additional elements, corners, door and window lintels made of ceramics, as well as blocks for the construction of internal enclosing structures. All this is coordinated by standard sizes and ideally assembled into a single complex.

Such important nuances

Despite the fact that porous blocks have a front surface, they are still like any other construction material, need finishing. Or rather, not so much in finishing, but in protection from the effects of precipitation.

For this purpose, decorative bricks, clinker tiles or natural stone. In general, adhesive finishes are an excellent option for porous block masonry.

  • There is no need to insulate such walls; in extreme cases, you can use warm plaster (see Warm plaster Knauf Grünband), which, by analogy with masonry mortar, contains perlite. But if you really want to, you can insulate it and even finish it frame method. You just need to take into account one very important nuance.

For attachment to ceramic wall lathing, as well as hanging cabinets on it, you cannot use the usual dowel-nails, since the thin partitions inside the block may not withstand the load. For this, there are special long expansion anchors, as well as chemical dowels, which you see in the picture. Use them and you won't have any problems with fasteners!

Let's consider in detail why to fill technological gap between the cladding and the Porotherm block with a perlite-based solution. And so, according to the Porotherm block laying technology, after the block is installed, the outer vertical seam must be carefully covered with mortar. Briefly, why this needs to be done, since masonry with a ceramic porous block is carried out with a groove - a ridge, and the block may not have the correct geometric shape or the worker will not place the block close to each other, then in the place where the groove-ridge will be there will be a gap, in other words, a gap. If you do not seal the vertical seam from the outside, but only plaster it from the inside, then closed convection will not work and the block will lose its thermal efficiency. In order to comply with the rules for laying a block, it was necessary to first raise the wall with a block, and then, when the seams were sealed, begin to lift the cladding. I do it the other way around, raise the lining by 2 - 3 rows of porotherm, then put the block down. This is convenient because you don’t have to install additional scaffolding for laying facing bricks, because both the scaffolding and the work on their construction cost money.

If you choose the most The right way first lay the block then the cladding, then here are some tips for you:

  1. Place connections in the mortar joint of the block in advance so that you don’t have to drill anything later.
  2. Put the house under the roof and then finish it with cladding.
  3. Do not buy facing bricks in advance (it may begin to mold, there may be ants and they will drag soil there and the brick will be dirty, it will get wet in the rain and efflorescence will begin to appear on it).
  4. Leave the vent. the gap between the cladding and block 1 is 1.5 cm.

You may be wondering why I fill the gap with perlite mortar rather than regular mortar or leave it empty altogether? I decided to do this because the manufacturer recommends placing the ceramic porous POROTHERM block on a warm solution, and it is on perlite. I put POROTHERM 44 on a regular solution, but pouring those. I fill the gap with perlite mortar and close the vertical seams, additionally insulate the wall and remove cold bridges.

The composition of the mixture is perlite.

I made the pouring mixture as follows:

I took 2 buckets of M75 perlite for one batch, my bucket is 12 liters, a 130 liter concrete mixer, 1 bucket of sand, half a bucket of M500 cement, half a bucket of water, maybe more or less, and soap.

Now about the kneading process itself:

Pour water then, turn off the concrete mixer, set it with the hole at the top, carefully (perlite is very volatile), pour out two buckets of perlite, turn on the mixer and put it in the working position, turn for 7-9 minutes (perlite has this property, it first takes up water and begins to clump, then turns into mush) add water if necessary. After the slurry is obtained, fill a bucket of sand (do not mix with sand for a long time), the perlite is mixed with the sand, add cement and mix for no more than 2 minutes, it is no longer recommended that the perlite granules will be broken by the sand and the thermal efficiency will be lost.

Porous hollow ceramic blocks are materials that help preserve and accumulate heat in the house. But despite this, in some cases walls made of this material also require insulation.

Heat loss in a house occurs through walls, windows, doors, roofs and even the basement. Through the walls low-rise buildings no more than 20% of heat is lost, since the areas of the roof and walls are almost equal. Significant heat losses (up to 40%) occur through air exchange, and the rest occurs on the roof. In the first climate zone, building codes(GSN) for energy saving provide for a heat transfer coefficient of enclosing structures (walls) of 2.8 (was 2.2), and for the roof - 4.95 (was 2.8). During the transition period we are in today, this coefficient for roofs could be 3.3.

Is it necessary to insulate walls made of blocks 38, 44 and 50 cm wide?

When building a house from hollow porous ceramic blocks, the walls can be of two types: single-layer, that is, made only from one block, or multi-layer. The latter, in turn, are divided into two-layer, consisting of a block and insulation, and three-layer, which includes a block, insulation and facing brick. For the construction of single-layer walls, porous blocks with a width of 38, 44 and 50 cm are used. It is not practical to insulate such walls, since the wall material from which they are made has a sufficient coefficient of resistance to heat transfer. The funds that are supposed to be spent on insulating such walls are better used for exterior finishing or installing translucent structures of higher quality from the point of view of energy saving - doors and windows. However, with the introduction of new energy saving standards, even walls made of ceramic blocks with a width of 38 cm are subject to insulation.

Which ceramic blocks require insulation?

Sometimes walls are erected from ceramic porous hollow blocks 25 and 30 cm wide. This happens when the wall material has not yet been selected, but construction works are already underway. For example, if a foundation is made, and its width does not correspond to the width of the porous block, which can provide the required thermal conductivity coefficient of the walls of the house. Then, when choosing a material for external walls, they are tied to the thickness of the block.

Since these blocks are originally intended for the construction of internal load-bearing walls, they do not have a sufficient coefficient of resistance to heat transfer.

When insulating a wall made of porous blocks, you must remember to install windows in the house with a heat transfer resistance coefficient of 0.5 m² - °C/W and, accordingly, insulate the roof - only then can the house be considered fully insulated.

Laying insulation

It is better to insulate walls made of porous ceramics with mineral wool slabs, which, unlike expanded polystyrene, have good vapor permeability. The insulation is attached to the wall with glue or with dowels so that it fits tightly to the wall surface. Further finishing of the walls is done at the discretion of the house owner. As for the thickness of the insulation for ceramic porous blocks, for a block with a width of 25 cm it is 100 mm, for a block with a width of 30 cm - 60 mm.

Another important point, which must be taken into account when insulating a house, is the use of so-called “light” (“warm”) when laying blocks masonry mortar, and not the usual cement-sand. This solution also contains cement, which acts as a binder. Thermal insulation material - perlite or expanded clay sand - is used as a filler.

The area of ​​joints with a thickness of 12 mm is only 4% on a wall made of ceramic porous hollow blocks. If you replace the cement-sand mortar with a “light” one, then the thermal characteristics of the wall will improve by 17% due to the large difference in the thermal conductivity coefficient of these solutions: for cement-sand it is 0.9 W/(m*°C), and for warm solution - 0.3 W/(m*°C). The production of such dry mixtures has not yet been developed in Ukraine, so they are imported from abroad.

Regarding ceramic blocks, or as they are also called - warm ceramics, there is a lot of controversy on the sidelines of construction. Some extol its virtues to the skies, while others bring us back to earth with their pessimistic moods.

In this article we will try to impartially evaluate all the advantages and disadvantages of this material, and also, using the video in this article for clarity, we will tell you how walls are built from ceramic blocks with brick cladding.

The main goal pursued by the creators of new structural wall materials is to increase the thermal efficiency of walls. A material that allows them to be erected quickly, without increasing their thickness too much and with minimal labor intensity is simply a godsend for any developer. And if at the same time it practically does not need insulation, then it simply has no price!

This is exactly how everything will be arranged with a relatively new look wall block, made from clay, and therefore rightfully called ceramic.

What is the peculiarity of the material?

Everyone knows that ceramics are cold material. How did it happen that the thermal conductivity coefficient of a ceramic block is almost equal to that of cellular structural concrete?

  • The thing is that its structure is also maximally saturated with air - and not only due to the cracks in the body of the block, but also due to the large number of pores in the ceramic itself.
  • To achieve a porous structure, sawdust is added to the clay during the production process. When fired, they burn out, leaving air cavities in their place. That is why such ceramics are called porous.


  • However, not all ceramic products have such heat preservation abilities. In one of the photos presented above, you can clearly see the stages of evolution that wall ceramics have gone through from simple solid bricks to the so-called super-porous thermoblock.
  • In the process of improving technology, solid brick first it became slotted, then its format increased to 2.1NF, which corresponds to double size (with standard length and width, height 138 mm).
  • At the next stage, a large-format block appeared - including a maximum format of 14.5NF with dimensions of 510 * 253 * 219 mm, which at first was simply slotted.
  • Porosization with the help of sawdust began to be used only later - they created that very warm ceramics, the thermal conductivity of which was reduced first to 0.12, and then, due to superporization, to 0.107 W/m*C.

Note: The thermal conductivity of the superporous block is equal to that of expanded clay and foam glass - and they are known to be full-fledged thermal insulation materials. In terms of thermal engineering, such walls are not inferior to wood, but at the same time they are much stronger and will last longer.

As for the strength of blocks made of porous ceramics, which skeptics doubt, nodding at the relative fragility of the material, we will always have something to answer them.

Opinion: Glass too brittle material, however, it is not only used to make internal partitions and stairs, but also manage to completely glaze the facades of houses. Ceramic, like glass, does not like impact, but can be drilled perfectly - despite the thin partitions inside the blocks. And if you don’t hit the walls of the house with a sledgehammer, they certainly won’t be in any danger.

What to choose for construction

Today, all of the above types of wall ceramics are on sale, including finishing ones. Which ones to buy for building a house, you need to be guided by local climatic conditions. It is on them that the thickness of the walls depends, as well as the need for their insulation.

  • Manufacturers mainly offer three full-size formats and one or two additional ones. You can see the dimensions in the table above.
  • They are standardized, and if they vary between different manufacturers, then only slightly. For example, one brand has a block length of 375 mm, while another has 380 mm. By the way, this size (380*250*219 mm) is the only one with which walls need to be insulated.
  • Larger stones, 440 or 510 mm long, in additional insulation dont need. Such walls are simply covered during the laying process decorative bricks close, without ventilation gap.



... turns into two additional ones

  • For ease of masonry, when you need to get, for example, the distance from a corner to an opening, you often need half a block, since a whole stone does not fit. However, this is not a solid brick, and if you try to cut it, it can simply be damaged.
  • The additions are made like this: in appearance they appear as a solid stone of full size, but along its axis it is visually divided into two halves, which are fastened to each other by thin ceramic bridges.
  • It is enough for the mason to lightly hit them with a pick, and the block itself will split into two parts, the side edges of which are also equipped with grooves and ridges, like full-fledged blocks.
  • To eliminate cold bridges, masonry is carried out not with ordinary mortar, but with heat-insulating mixtures, the filler for which is not quartz, but perlite sand.
  • They are sold in bags of 17-25 kg and are simply diluted with water before use. Facing brick placed on a regular cement-sand mortar.

Also, for the convenience of installing jumpers, you can purchase U-shaped blocks, which are shown in the picture above.

The main nuances of constructing walls with cladding

The thickness of the walls of the house is calculated based on what building materials are chosen for it. If this is a block measuring 380*250*219 mm, which, as already mentioned, must be insulated, then the total thickness of the pie for an area with an average winter temperature of -32 degrees will be about 640 mm.

Of them:

  • 380 mm porous block brand M100;
  • 100 mm insulation (2 layers of 50 mm each);
  • 40 mm ventilated gap;
  • 120 mm facing brick.

Note: The gap inside the wall pie is in this case necessary for ventilation of the insulation. Its presence will not only save the walls from freezing in winter, but will also prevent them from overheating in summer. That is why insulated ventilated facades are the most the best option for residential buildings.

In order for the air to internal space multilayer wall did not stagnate, and it could be ventilated, in brickwork leave vents. These are either quarter-brick windows at the bottom of the wall, or vertical seams unfilled with mortar (every fifth). To prevent insects or rodents from getting into the vents, they are covered with a plastic mesh.



When masonry of ceramic blocks is carried out without insulation - that is, if the brick fits tightly to the ceramic block, they are used to bind them steel mesh. To connect them at a distance (if there is insulation and a ventilation gap), use fiberglass rods with sand tips, which are embedded in the masonry joints.

By the way, in ceramic block masonry there are only horizontal seams - the vertical edges of the stones are connected through the tight interlocking of the groove and the ridge.

Share