Измеряет количество теплоты. «Количество теплоты. Удельная теплоёмкость

В данном уроке мы научимся рассчитывать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении. Для этого мы обобщим те знания, которые были получены на предыдущих уроках.

Кроме того, мы научимся с помощью формулы для количества теплоты выражать остальные величины из этой формулы и рассчитывать их, зная другие величины. Также будет рассмотрен пример задачи с решением на вычисление количества теплоты.

Данный урок посвящен вычислению количества теплоты при нагревании тела или выделяемого им при охлаждении.

Умение вычислять необходимое количество теплоты является очень важным. Это может понадобиться, к примеру, при вычислении количества теплоты, которое необходимо сообщить воде для обогрева помещения.

Рис. 1. Количество теплоты, которое необходимо сообщить воде для обогрева помещения

Или для вычисления количества теплоты, которое выделяется при сжигании топлива в различных двигателях:

Рис. 2. Количество теплоты, которое выделяется при сжигании топлива в двигателе

Также эти знания нужны, например, чтобы определить количество теплоты, которое выделяется Солнцем и попадает на Землю:

Рис. 3. Количество теплоты, выделяемое Солнцем и попадающее на Землю

Для вычисления количества теплоты необходимо знать три вещи (рис. 4):

  • массу тела (которую, обычно, можно измерить с помощью весов);
  • разность температур, на которую необходимо нагреть тело или охладить его (обычно измеряется с помощью термометра);
  • удельную теплоемкость тела (которую можно определить по таблице).

Рис. 4. Что необходимо знать для определения

Формула, по которой вычисляется количество теплоты, выглядит так:

В этой формуле фигурируют следующие величины:

Количество теплоты, измеряется в джоулях (Дж);

Удельная теплоемкость вещества, измеряется в ;

- разность температур, измеряется в градусах Цельсия ().

Рассмотрим задачу на вычисление количества теплоты.

Задача

В медном стакане массой грамм находится вода объемом литра при температуре . Какое количество теплоты необходимо передать стакану с водой, чтобы его температура стала равна ?

Рис. 5. Иллюстрация условия задачи

Сначала запишем краткое условие (Дано ) и переведем все величины в систему интернационал (СИ).

Дано:

СИ

Найти:

Решение:

Сначала определи, какие еще величины потребуются нам для решения данной задачи. По таблице удельной теплоемкости (табл. 1) находим (удельная теплоемкость меди, так как по условию стакан медный), (удельная теплоемкость воды, так как по условию в стакане находится вода). Кроме того, мы знаем, что для вычисления количества теплоты нам понадобится масса воды. По условию нам дан лишь объем. Поэтому из таблицы возьмем плотность воды: (табл. 2).

Табл. 1. Удельная теплоемкость некоторых веществ,

Табл. 2. Плотности некоторых жидкостей

Теперь у нас есть все необходимое для решения данной задачи.

Заметим, что итоговое количество теплоты будет состоять из суммы количества теплоты, необходимого для нагревания медного стакана и количества теплоты, необходимого для нагревания воды в нем:

Рассчитаем сначала количество теплоты, необходимое для нагревания медного стакана:

Прежде чем вычислить количество теплоты, необходимое для нагревания воды, рассчитаем массу воды по формуле, хорошо знакомой нам из 7 класса:

Теперь можем вычислить:

Тогда можем вычислить:

Напомним, что означает: килоджоули. Приставка «кило» означает , то есть .

Ответ: .

Для удобства решения задач на нахождение количества теплоты (так называемые прямые задачи) и связанных с этим понятием величин можно пользоваться следующей таблицей.

Искомая величина

Обозначение

Единицы измерения

Основная формула

Формула для величины

Количество теплоты

О единицах количества теплоты. Единицу количества теплоты - «малую» калорию - мы определили выше как количество теплоты, которое требуется для повышения температуры воды на 1 К при атмосферном давлении. Но так как теплоемкость воды при разных температурах различна, необходимо условиться о той температуре, при которой выбирается этот одноградусный интервал.

В СССР принята так называемая двадцатиградусная калория, для которой принят интервал от 19,5 до 20,5°С. В некоторых странах применяется пятнадцатиградусная калория (интервал Первая из них равна Дж, вторая - Дж. Иногда применяется средняя калория, равная одной сотой количества тепла, необходимого для нагревания воды от до

Измерение количества теплоты. Для непосредственного измерения количества теплоты, отданного или полученного телом, служат специальные приборы - калориметры.

В наиболее простой своей форме калориметр представляет собой сосуд, заполненный веществом, теплоемкость которого хорошо известна, например водой (удельная теплоемкость

Измеряемое количество теплоты тем или иным путем передается калориметру, в результате чего изменяется его температура. Измерив это изменение температуры мы получим теплоту

где с - удельная теплоемкость вещества, заполняющего калориметр, его масса.

Необходимо учитывать, что теплота передается не только веществу калориметра, но и сосуду и различным устройствам, которые могут в нем помещаться. Поэтому перед измерением нужно определить так называемый тепловой эквивалент калориметра - количество теплоты, нагревающее «пустой» калориметр на один градус. Иногда эту поправку вводят добавлением к массе воды добавочной массы теплоемкость которой равна теплоемкости сосуда и других частей калориметра. Тогда можно считать, что тепло передается массе воды, равной Величина называется водяным эквивалентом калориметра.

Измерение теплоемкости. Калориметр служит также для измерения теплоемкости. В этом случае необходимо точно знать количество подведенного (или отведенного) тепла Если известно, то удельная теплоемкость вычисляется из равенства

где масса исследуемого тела, а изменение его температуры, вызванное теплотой

Тепло к телу подводится в калориметре, который должен быть устроен так, чтобы подводимое тепло передавалось только исследуемому телу (и, конечно, калориметру), но не терялось в окружающем пространстве. Между тем такие потери тепла в какой-то мере всегда происходят, и их учет является главной заботой при калориметрических измерениях.

Измерение теплоемкости газов затруднено тем, что из-за малой их плотности теплоемкость той массы газа, которая может быть помещена в калориметр, мала. При обычных температурах она может оказаться сравнимой с теплоемкостью пустого калориметра, что неизбежно понижает точность измерений. Это особенно относится к измерению теплоемкости при постоянном объеме При определении эту трудность можно обойти, если исследуемый газ заставить протекать (при постоянном давлении) через калориметр (см. ниже).

Измерение Едва ли не единственным методом непосредственного измерения теплоемкости газа при постоянном объеме является метод, предложенный Жоли (1889 г.). Схема этого метода представлена на рис. 41.

Калориметр состоит из камеры К, в которой на концах коромысла точных весов подвешены два одинаковых полых медных шара снабженных тарелками снизу и отражателями сверху. Один из шаров откачивается, другой наполняется исследуемым газом. Для того чтобы газ имел заметную теплоемкость, его вводят под значительным давлением Массу введенного газа определяют с помощью весов, восстанавливая гирями нарушенное введением газа равновесие.

После того как между шарами и камерой установится тепловое равновесие, в камеру впускают водяной пар (трубки для входа и выхода пара расположены на передней и задней стенках камеры и на рис. 41 не показаны). Пар конденсируется на обоих шарах, нагревая их, и стекает в тарелки. Но на сфере, заполненной газом, конденсируется больше жидкости, так как ее теплоемкость больше. Из-за избытка конденсата на одном из шаров равновесие шаров снова нарушится. Уравновесив весы, мы узнаем ту избыточную массу жидкости, которая сконденсировалась благодаря присутствию газа в шаре. Если эта избыточная масса воды равна то, умножив ее на теплоту конденсации воды найдем количество теплоты, которое пошло на нагревание газа от начальной температуры до температуры водяного пара Измерив эту разность термометром, получим:

где удельная теплоемкость - газа. Зная удельную теплоемкость мы найдем, что молярная теплоемкость

Измерение Мы уже упоминали, что для измерения теплоемкости при постоянном давлении исследуемый газ заставляют протекать через калориметр. Только таким путем можно обеспечить постоянство давления газа, несмотря на подвод тепла и нагревание, без которого нельзя измерять теплоемкость. В качестве примера такого метода приведем здесь описание классического опыта Реньо ( Схема аппарата представлена на рис. 42.

Исследуемый газ из резервуара А через кран пропускают через змеевик, помещенный в сосуде с маслом В, нагреваемым каким-нибудь источником тепла. Давление газа регулируется краном а его постоянство контролируется манометром Проходя длинный путь в змеевике, газ принимает температуру масла, которая измеряется термометром

Нагретый в змеевике газ проходит затем через водяной калориметр, охлаждаясь в нем до некоторой температуры измеряемой термометром и выходит наружу. Измерив давление газа в резервуаре А в начале и в конце опыта (для этого служит манометр мы узнаем массу прошедшего через аппарат газа.

Количество теплоты отданное газом калориметру, равно произведению водяного эквивалента калориметра на изменение его температуры где начальная температура калориметра.

(или теплопередаче).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус .

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы . Ясно, что для нагрева, напри-мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов .

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 , а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе-ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг , требуется количество теплоты, равное 4200 Дж , а для нагревания на 1 °С такой же массы подсолнечного масла необхо-димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком — 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 - t 1 ) ,

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела , t 1 — начальная темпе-ратура, t 2 — конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q > 0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле:

Q = C (t 2 - t 1 ) .

§ 1 Количество теплоты

Включим в холодном помещении электрообогреватель, и температура воздуха начинает повышаться. Или после зимней прогулки возвращаемся в теплый дом и ощущаем тепло. Названные примеры относят к теплообмену.

Теплообмен - это явление передачи внутренней энергии от одного тела к другому телу без совершения механической работы. В процессе теплообмена энергия или, как говорят, теплота поступает (нагревание комнаты электрообогревателем) или выделяется в окружающую среду (остывание горячей воды в чаше).

К примеру, чтобы согреть помещение или охладить устройство, защитить механизм от перегрева, необходимо выполнить расчеты, а значит, ввести параметр, с помощью которого удастся быстро и эффективно сосчитать количество поступающей или выделяющейся теплоты.

Количество теплоты- это энергия, передающаяся от одного тела к другому при теплообмене.

Вы видите калориметр - прибор для измерения количества теплоты. Простейший калориметр состоит из двух стаканов: внутреннего алюминиевого и внешнего пластмассового, которые разделены воздушным промежутком.

Как его применяют на практике? Во внутренний стакан нальём 200 г воды. Измерим её температуру: 20 °С. Погрузим в воду горячее тело - металлический цилиндрик.

Внутри калориметра начнётся теплообмен, и некоторое количество теплоты перейдёт от цилиндрика к воде, в результате чего её температура повысится и станет равной 60 °С. Можно вычислить изменение температуры, тем самым узнаем, на сколько градусов повысилась температура воды в калориметре:

Известно, что масса воды 200 г, инженер-теплотехник объяснит, что вода получила 200 г · 40 °С = 4000 калорий теплоты, но в физике количество теплоты измеряют джоулями. Формула выглядит следующим образом:

количество теплоты равно произведению удельной теплоемкости вещества на массу взятого вещества и на его изменение температуры, где

В этой формуле появилась физическая величина - удельная теплоемкость.

Удельная теплоёмкость вещества - физическая скалярная величина, показывающая, какое количество теплоты необходимо для изменения температуры 1(одного) кг этого вещества на 1 °С.

Эта величина является табличной.

Удельные теплоёмкости всех веществ измерены и занесены в специальные таблицы. Например, для воды в жидком состоянии с = 4200 Дж/(кг°С). Физический смысл показывает, что для нагревания 1 кг воды на 1 °С потребуется 4200 Дж теплоты. Иначе: каждый килограмм воды остывает на 1 °С, отдавая окружающим телам 4200 Дж тепловой энергии. Возвращаясь к нашему примеру, так как внутри калориметра находится вода, то воспользуемся данными таблицы и запишем ее значение: с = 4200 Дж/(кг°С)

Воспользуемся выше указанной формулой и сосчитаем количество теплоты, которое получила вода в джоулях:

§ 2 Единицы измерения количества теплоты

Для удобства и специфики работы используют внесистемные единицы количества теплоты - калории.

Калория - это количество тепла, необходимое для нагрева 1 г воды на 1 °С (от 19,5 до 20,5 °С).

Или используют:

1кДж = 1000Дж

1МДж = 1000000Дж

Данную формулу применяют не только в том случае, когда вещество нагревается, но и когда отдает тепло при охлаждении.

Калориметрические измерения показывают, что теплообмен всегда протекает так, что убывание внутренней энергии одних тел всегда сопровождается таким же поступлением внутренней энергии других тел, участвующих в теплообмене. Это одно из проявлений закона сохранения и превращения энергии.

Для расчета количества теплоты применяют формулу, связывающую удельную теплоемкость вещества, массу тела и изменение температуры, которую используют для расчета при нагревании и при охлаждении вещества. Единица измерения количества теплоты в системе СИ - джоуль. Также выяснили табличную величину для разных веществ - удельная теплоемкость

Список использованной литературы:

  1. Физика. 8 класс: Учебник для общеобразовательных учреждений/А.В. Перышкин. – М.: Дрофа, 2010.
  2. Физика 7-9 Учебник И.В. Кривченко.
  3. Физика Справочник. О.Ф. Кабардин. – М.: АСТ-ПРЕСС, 2010.

Использованные изображения:

Тепловую энергию (количество теплоты) тела можно измерить непосредственно с помощью так называемого калориметра; простой вариант такого прибора изображен на рис. 5. Это тщательно теплоизолированный закрытый сосуд, снабженный устройствами для измерения температуры внутри него и иногда заполняемый рабочей жидкостью с известными свойствами, например водой. Чтобы измерить количество теплоты в небольшом нагретом теле, его помещают в калориметр и ждут, когда система придет в тепловое равновесие. Количество теплоты, переданное калориметру (точнее, наполняющей его воде), определяют по повышению температуры воды. (14.86 Кб)

Количество теплоты, выделяющейся в ходе химической реакции, например горения, можно измерить, поместив в калориметр небольшую «бомбу». В «бомбе» находятся образец, к которому подведены электрические провода для поджига, и соответствующее количество кислорода. После того как образец полностью сгорает и устанавливается тепловое равновесие, определяют, насколько повысилась температура воды в калориметре, а отсюда – количество выделившейся теплоты.

См. также КАЛОРИМЕТРИЯ. Единицы измерения теплоты . Теплота представляет собой одну из форм энергии, а поэтому должна измеряться в единицах энергии. В международной системе СИ единицей энергии является джоуль (Дж). Допускается также применение внесистемных единиц количества теплоты – калорий: международная калория равна 4,1868 Дж, термохимическая калория – 4,1840 Дж. В зарубежных лабораториях результаты исследований часто выражают с помощью т.н. 15-градусной калории, равной 4,1855 Дж. Выходит из употребления внесистемная британская тепловая единица (БТЕ): БТЕ средн = 1,055 Дж. Основными источниками теплоты являются химические и ядерные реакции, а также различные процессы преобразования энергии. Примерами химических реакций с выделением теплоты являются горение и расщепление компонентов пищи. Почти вся теплота, получаемая Землей, обеспечивается ядерными реакциями, протекающими в недрах Солнца. Человечество научилось получать теплоту с помощью управляемых процессов деления ядер, а теперь пытается использовать с той же целью реакции термоядерного синтеза. В теплоту можно превращать и другие виды энергии, например механическую работу и электрическую энергию. Важно помнить, что тепловую энергию (как и любую другую) можно лишь преобразовать в другую форму, но нельзя ни получить «из ничего», ни уничтожить. Это один из основных принципов науки, называемой термодинамикой. ТЕРМОДИНАМИКА Термодинамика – это наука о связи между теплотой, работой и веществом. Современные представления об этих взаимосвязях сформировались на основе трудов таких великих ученых прошлого, как Карно, Клаузиус, Гиббс, Джоуль, Кельвин и др. Термодинамика объясняет смысл теплоемкости и теплопроводности вещества, теплового расширения тел, теплоты фазовых переходов. Эта наука базируется на нескольких экспериментально установленных законах – началах. Начала термодинамики . Сформулированное выше нулевое начало термодинамики вводит понятия теплового равновесия, температуры и термометрии. Первое начало термодинамики представляет собой утверждение, имеющее ключевое значение для всей науки в целом: энергию нельзя ни уничтожить, ни получить «из ничего», так что полная энергия Вселенной есть величина постоянная. В простейшей форме первое начало термодинамики можно сформулировать так: энергия, которую получает система, минус энергия, которую она отдает, равна энергии, остающейся в системе. На первый взгляд это утверждение кажется очевидным, но не в такой, например , ситуации, как сгорание бензина в цилиндрах автомобильного двигателя: здесь получаемая энергия является химической, отдаваемая –механической (работой), а энергия, остающаяся в системе, – тепловой.

Итак, ясно, что энергия может переходить из одной формы в другую и что такие преобразования постоянно происходят в природе и технике. Более ста лет назад Дж.Джоуль доказал это для случая превращения механической энергии в тепловую с помощью устройства, показанного на рис. 6,

а . В этом устройстве опускающиеся и поднимающиеся грузы вращали вал с лопастями в заполненном водой калориметре, в результате чего вода нагревалась. Точные измерения позволили Джоулю определить, что одна калория теплоты эквивалентна 4,186 Дж механической работы. Устройство, изображенное на рис. 6, б , использовалось для определения теплового эквивалента электрической энергии.

Первое начало термодинамики объясняет многие обыденные явления. Например, становится ясно, почему нельзя охладить кухню с помощью открытого холодильника. Предположим, что мы теплоизолировали кухню от окружающей среды. По проводу питания холодильника в систему непрерывно подводится энергия, но при этом никакой энергии система не отдает. Таким образом, ее полная энергия возрастает, и в кухне становится все теплее: достаточно потрогать трубки теплообменника (конденсатора) на задней стенке холодильника, и вы поймете бесполезность его как «охлаждающего» устройства. Но если бы эти трубки были выведены за пределы системы (например, за окно), то кухня отдавала бы больше энергии, чем получала, т.е. охлаждалась бы, а холодильник работал как оконный кондиционер.

Первое начало термодинамики – закон природы, исключающий создавание заново или уничтожение энергии. Однако оно ничего не говорит о том, как протекают в природе процессы передачи энергии. Так, мы знаем, что горячее тело нагреет холодное, если эти тела привести в соприкосновение. Но сможет ли холодное тело само по себе передать запас своей теплоты горячему? Последняя возможность категорически отвергается вторым началом термодинамики.

Первое начало исключает также возможность создания двигателя с коэффициентом полезного действия (КПД) более 100% (подобный

« вечный » двигатель мог бы сколь угодно долго отдавать больше энергии, чем сам потребляет). Нельзя построить двигатель даже с КПД, равным 100%, так как некоторая часть подводимой к нему энергии обязательно должна быть потеряна им в виде менее полезной тепловой энергии. Так, колесо не будет крутиться сколь угодно долго без подвода энергии, поскольку вследствие трения в подшипниках энергия механического движения будет постепенно переходить в теплоту, пока колесо не остановится.

Тенденцию к превращению «полезной» работы в менее полезную энергию – теплоту – можно сопоставить с другим процессом, который происходит, если соединить два сосуда, содержащие разные газы. Подождав достаточно долго, мы обнаруживаем в обоих сосудах однородную смесь газов – природа действует так, что упорядоченность системы уменьшается. Термодинамическая мера этой неупорядоченности называется энтропией, и второе начало термодинамики можно сформулировать иначе: процессы в природе всегда протекают так, что энтропия системы и ее окружения увеличивается. Таким образом, энергия Вселенной остается постоянной, а ее энтропия непрерывно растет.

Поделиться