Квантовая физика для чайников: суть простыми словами. Поймёт даже ребёнок. Точнее, особенно ребенок! Шесть фактов о квантовой физике, которые должен знать каждый Какие характеристики относятся описанию квантовой физики

Kvantinė fizika statusas T sritis fizika atitikmenys: angl. quantum physics vok. Quantenphysik, f rus. квантовая физика, f pranc. physique quantique, f … Fizikos terminų žodynas

У этого термина существуют и другие значения, см. Стационарное состояние. Стационарным состоянием (от лат. stationarius стоящий на месте, неподвижный) называется состояние квантовой системы, при котором её энергия и другие динамические … Википедия

- … Википедия

Имеет следующие подразделы (список неполный): Квантовая механика Алгебраическая квантовая теория Квантовая теория поля Квантовая электродинамика Квантовая хромодинамика Квантовая термодинамика Квантовая гравитация Теория суперструн См. также… … Википедия

Квантовая механика Принцип неопределённости Введение... Математическая формулировка... Основа … Википедия

ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств … Физическая энциклопедия

Физика гиперядер раздел физики на стыке ядерной физики и физики элементарных частиц, в котором предметом исследования выступают ядроподобные системы, содержащие кроме протонов и нейтронов другие элементарные частицы гипероны. Также… … Википедия

Раздел физики, изучающий динамику частиц в ускорителях, а также многочисленные технические задачи, связанные с сооружением и эксплуатацией ускорителей частиц. Физика ускорителей включает в себя вопросы, связанные с получением и накоплением частиц … Википедия

Физика кристаллов Кристалл кристаллография Кристаллическая решётка Типы кристаллических решёток Дифракция в кристаллах Обратная решётка Ячейка Вигнера Зейтца Зона Бриллюэна Структурный фактор базиса Атомный фактор рассеяния Типы связей в… … Википедия

Квантовая логика раздел логики, необходимый для рассуждения о предложениях, которые учитывают принципы квантовой теории. Эта область исследований была основана в 1936 году работой Гарита Бирхофа и Джона фон Неймана, которые пытались… … Википедия

Книги

  • Квантовая физика , Мартинсон Леонид Карлович. Подробно изложен теоретический и экспериментальный материал, лежащий в основе квантовой физики. Большое внимание уделено физическому содержанию основных квантовых понятий и математическому…
  • Квантовая физика , Шеддад Каид-Сала Феррон. Весь наш мир и всё, что в нём находится - дома, деревья и даже люди! - состоит из крошечных частиц. Книга "Квантовая физика" из серии" Первые книжки о науке" расскажет о невидимом для нашего…

Наука

Квантовая физика работает с изучением поведения самых маленьких вещей в нашей Вселенной: субатомных частиц. Это относительно новая наука, лишь в начале 20 века она стала таковой после того, как физиков стал интересовать вопрос, почему они не могут объяснить некоторые эффекты радиации. Один из новаторов того времени Макс Планк (Max Planck) при исследовании крошечных частиц с энергией использовал термин "кванты", отсюда и пошло название "квантовая физика". Планк отметил, что количество энергии, содержащейся в электронах, не является произвольным, а соответствует стандартам "квантовой" энергии. Одно из первых результатов практического применения этого знания стало изобретение транзистора.

В отличие от негибких законов стандартной физики, правила квантовой физики можно нарушать. Когда ученые полагают, что имеют дело с одним из аспектов исследования материи и энергии, появляется новый поворот событий, что напоминает им о том, как непредсказуема бывает работа в этой области. Тем не менее, они, даже если не полностью понимают происходящее, могут использовать результаты своей работы для разработки новых технологий, которые порой могут быть названы не иначе, как фантастическими.

В будущем, квантовая механика сможет помочь сохранить военные секреты, а также обеспечить безопасность и защитить ваш банковский счет от кибер-воров. Ученые в настоящее время работают на квантовых компьютерах, возможности которых выходят далеко за пределы обычного ПК. Разделенные на субатомные частицы, предметы в мгновение ока легко могут быть перенесены с одного места на другое. И, возможно, квантовая физика сможет дать ответ на самый интригующий вопрос относительно того, из чего состоит вселенная и как зародилась жизнь.

Ниже представлены факты, как квантовая физика может изменить мир. Как сказал Нильс Бор (Niels Bohr): "Тот, кто не шокирован квантовой механикой, просто еще не понял принцип ее работы".


Управление турбулентностью

Вскоре, возможно, благодаря квантовой физике, можно будет устранить турбулентные зоны, из-за которых вы проливаете сок в самолете. Путем создания квантовой турбулентности в ультрахолодных атомах газа в лаборатории, бразильские ученые, возможно, поймут работу турбулентных зон, с которыми сталкиваются самолеты и лодки. На протяжении веков, турбулентность ставила в тупик ученых из-за трудности ее воссоздания в лабораторных условиях.

Турбулентность вызывается сгустками газа или жидкости, но в природе кажется будто она формируется хаотично и формируется неожиданно. Хотя турбулентные зоны могут образовываться в воде и в воздухе, ученые обнаружили, что они также могут формироваться и в условиях ультрахолодных атомов газа или в среде сверхтекучего гелия. При помощи изучения этого явления в контролируемых лабораторных условиях, ученые в один прекрасный день смогут точно предсказывать место появления турбулентных зон, и, возможно, контролировать их в природе.


Спинтроника

Новый магнитный полупроводник, разработанный в Массачусетском технологическом институте, может привести к появлению еще более быстрого энергоэффективного электронного устройства в будущем. Называемая «спинтроника», эта технология использует спиновое состояние электронов для передачи и хранения информации. В то время, как обычные электронные схемы используют только зарядовое состояние электрона, спинтроника пользуется преимуществами спинового направления электрона.

Обработка информации с помощью схем спинтроники позволит данным накапливаться сразу с двух направлений одновременно, что так же уменьшит размер электронных схем. Этот новый материал внедряет электрон в полупроводник на основе его спиновой ориентации. Электроны проходят через полупроводник и становятся готовыми быть спин-детекторами на стороне выхода. Ученые утверждают, что новые полупроводники могут работать при комнатной температуре и являются оптически прозрачными, что означает возможность работы с сенсорными экранами и солнечными батареями. Они также полагают, что это поможет изобретателям придумать еще более многофункциональные устройства.


Параллельные миры

Вы никогда не задумывались о том, какой бы была наша жизнь, если у нас была возможность путешествовать во времени? Вы бы убили Гитлера? Или присоединились бы к римским легионам для того, чтобы увидеть древний мир? Тем не менее, пока мы все фантазируем на тему, чтобы мы сделали, если бы у нас была возможность вернуться в прошлое, ученые из калифорнийского университета Санта-Барбары уже очищают путь к восстановлению обид прошлых лет.

В эксперименте 2010 года ученым удалось доказать, что объект может одновременно существовать в двух разных мирах. Они изолировали крошечных кусочек металла и в специальных условиях обнаружили, что он двигался и стоял на месте одновременно. Однако, кто-то может посчитать это наблюдение бредом, вызванным переутомлением, все же физики говорят, что наблюдения за объектом действительно показывают, что он распадается во Вселенной на две части – одну из них мы видим, а другую нет. Теории параллельных миров в один голос говорят о том, что абсолютно любой объект распадается.

Сейчас ученые пытаются выяснить, как можно "перепрыгнуть" момент распада и войти в тот мир, который нам не видим. Это путешествие в параллельные вселенные во времени теоретически должно работать, поскольку квантовые частицы движутся и вперед, и назад во времени. Теперь, все, что ученые должны сделать – это построить машину времени с помощью квантовых частиц.


Квантовые точки

В скором времени, квантовые физики смогут помочь докторам обнаруживать раковые клетки в организме и точно определять, куда они распространились. Ученые обнаружили, что некоторые мелкие полупроводниковые кристаллы, называемые квантовыми точками, могут светиться под воздействием ультрафиолетового излучения, а также их удалось сфотографировать при помощи специального микроскопа. Затем их соединили с особым, «привлекательным» для раковых клеток материалом. При попадании в организм светящиеся квантовые точки притягивались к раковым клеткам, показывая тем самым, врачам, где именно искать. Свечение продолжается достаточно длительное время, и для ученых процесс настройки точек под характеристики конкретного вида рака относительно несложен.

Хотя высокотехнологичная наука, безусловно, несет ответственность за многие медицинские достижения, человек на протяжении веков зависим от многих других средств борьбы с заболеванием.


Молитва

Трудно представить себе, что может быть общего между коренным американцем, целителем-шаманом и пионерами квантовой физике. Однако, между ними все же есть нечто общее. Нильс Бор, один из ранних исследователей этой странной области науки, полагал, что многое из того, что мы называем реальностью зависит от "эффекта наблюдателя", то есть связь между тем, что происходит, и как мы это видим. Эта тема породила развитие серьезных дебатов между специалистами квантовой физики, однако, эксперимент, проведенный Бором более полувека назад, подтвердил его предположение.

Все это означает, что наше сознание влияет на реальность и может изменить ее. Повторяющиеся слова молитвы и ритуалы церемонии шамана-целителя могут быть попытками изменить направление "волны", которая создает реальность. Большинство обрядов проводятся также в присутствии многочисленных наблюдателей, указывая на то, что чем больше "волн исцеления" исходит от наблюдателей, тем мощнее они оказывают воздействие на реальность.


Взаимосвязь объектов

Взаимосвязь объектов может в дальнейшем оказать огромное влияние на солнечную энергию. Взаимосвязь объектов подразумевает квантовую взаимозависимость атомов, разделенных в реальном физическом пространстве. Физики полагают, что взаимосвязь может образоваться в части растений, ответственных за фотосинтез, или преобразование света в энергию. Структуры, ответственные за фотосинтез, хромофоры, могут превращать 95 процентов получаемого света в энергию.

Сейчас ученые изучают, как эта взаимосвязь на квантовом уровне может повлиять на создание солнечной энергии в надежде создания эффективных естественных солнечных элементов. Специалисты также обнаружили, что водоросли могут использовать некоторые положения квантовой механики для перемещения получаемой от света энергии, а также сохранять ее в двух местах одновременно.


Квантовые вычисления

Другой не менее важный аспект квантовой физики может быть применен в компьютерной сфере, где особый тип сверхпроводящего элемента дает компьютеру беспрецедентную скорость и силу. Исследователи объясняют, что элемент ведет себя как искусственные атомы, поскольку они могут только либо получить, либо потерять энергию путем перемещения между дискретными уровнями энергии. Самый сложный по строению атом обладает пятью уровнями энергии. Эта сложная система («кудит») обладает значительными преимуществами по сравнению с работой предыдущих атомов, у которых было лишь два уровня энергии («кубит»). Кудиты и кубиты это часть битов, используемых в стандартных компьютерах. Квантовые компьютеры в своей работе будут использовать принципы квантовой механики, что позволит им выполнять вычисления гораздо быстрее и точнее по сравнению с традиционными компьютерами.

Существует, однако, проблема, которая может возникнуть, если квантовые вычисления станут реальностью – криптография, или кодирование информации.


Квантовая криптография

Вся информация, начиная от номера вашей кредитной карты и заканчивая сверхсекретными военными стратегиями, есть в сети интернета, а квалифицированный хакер с достаточным количеством знаний и мощным компьютером может опустошить ваш банковский счет или подвергнуть мировую безопасность угрозе. Специальная кодировка держит эту информацию под секретом, а компьютерные специалисты постоянно работают над созданием новых, более безопасных методов кодирования.

Кодирование информации внутри отдельной частицы света (фотон) уже давно является целью квантовой криптографии. Казалось, что ученые университета Торонто уже очень близко подошли к созданию этого метода, поскольку им удалось закодировать видео. Шифрование включает в себя строки из нулей и единиц, которые и являются «ключом». Добавление ключа один раз кодирует информацию, добавление его повторно, декодирует ее. Если постороннему человеку удается получить ключ, то информация может быть взломана. Но даже если ключи будут использованы на квантовом уровне, уже сам факт их применения будет наверняка подразумевать наличие хакера.


Телепортация

Это научная фантастика, не более. Однако, она была осуществлена, но только не с участием человека, а с участием больших молекул. Но в этом то и заключается проблема. Каждая молекула в организме человека должна быть отсканирована с двух сторон. Но это вряд ли произойдет в ближайшее время. Есть еще одна проблема: как только вы сканируете частицу, по законам квантовой физики, вы меняете ее, то есть у вас нет возможности сделать ее точную копию.

Вот где проявляется взаимосвязь объектов. Она связывает два объекта так, будто они являются единым целым. Мы сканируем одну половину частицы, а телепортируемая копия будет сделана другой половиной. Это будет точная копия, поскольку мы не измеряли саму частицу, мы измеряли ее двойника. То есть частица, которую мы измерили, будет разрушена, но ее точная копия реанимирована ее двойником.


Частицы Бога

Ученые используют очень огромное свое творение – большой адронный коллайдер – для того, чтобы исследовать нечто крайне маленькое, но очень важное – фундаментальные частицы, которые, как полагаются, лежат в основе зарождения нашей Вселенной.

Частицы Бога – это то, что, как утверждают ученые, дает массу элементарным частицам (электронам, кваркам и глюонам). Специалисты считают, что частицы Бога должны пронизывать все пространство, но до сих пор существование этих частиц не доказано.

Обнаружение этих частиц помогло бы физикам понять, как Вселенная оправилась после Большого Взрыва и превратилась в то, что нам известно о ней сегодня. Это также помогло бы объяснить, как вещество балансирует с антивеществом. Короче говоря, выделение этих частиц поможет объяснить все.


WikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 11 человек(а).

Квантовая физика (она же квантовая теория или квантовая механика) – это отдельное направление физики, которое занимается описанием поведения и взаимодействия материи и энергии на уровне элементарных частиц, фотонов и некоторых материалов при очень низких температурах. Квантовое поле определяется как «действие» (или в некоторых случаях угловой момент) частицы, что по размеру находится в пределах величины крошечной физической константы, которая называется постоянной Планка.

Шаги

постоянная Планка

    Начните с изучения физического понятия постоянной Планка. В квантовой механике, постоянная Планка – это квант действия, обозначается как h . Аналогично, для взаимодействующих элементарных частиц, квант момента импульса - это приведенная постоянная Планка (постоянная Планка поделенная на 2 π) обозначается как ħ и называется «h с чертой». Значение постоянной Планка чрезвычайно мало, она объединяет те моменты импульса и обозначения действий, что имеют более общую математическую концепцию. Название квантовая механика подразумевает, что некоторые физические величины, подобные моменту импульса могут меняться только дискретно , а не непрерывным (см. аналоговым) способом.

    • Например, момент импульса электрона, привязанного к атому или молекуле, квантуется и может принимать только значения кратные приведенной постоянной Планка. Это квантование увеличивает орбиталь электрона на серию целого первичного квантового числа. В отличие от этого, момент импульса несвязанных электронов, находящихся рядом, не квантуется. Постоянная Планка также применяется в квантовой теории света, где квантом света является фотон, и материя взаимодействует с энергией посредством перехода электронов между атомами или «квантового скачка» связанного электрона.
    • Единицы постоянной Планка также можно рассматривать как время момента энергии. Например, в предметной области физики элементарных частиц, виртуальные частицы представлены, как масса частиц, которые спонтанно возникают из вакуума на очень малом участке и играют роль в их взаимодействии. Предел жизни этих виртуальных частиц – это энергия (масса) каждой частицы. Квантовая механика имеет большую предметную область, но в каждой математической ее части присутствует постоянная Планка.
  1. Узнайте о тяжелых частицах. Тяжелые частицы проходят от классического к квантовому энергетическому переходу. Даже если свободный электрон, обладающий некоторыми квантовыми свойствами (таким как вращение), в качестве несвязанного электрона, приближается к атому и замедляется (возможно, из-за испускания им фотонов), он переходит от классического к квантовому поведению, так как его энергия опускается ниже энергии ионизации. Электрон связывается с атомом и его момент импульса по отношению к атомному ядру ограничивается тем квантовым значением орбитали, которую он может занять. Этот переход внезапен. Его можно сравнить с механической системой, которая изменяет свое состояние от нестабильного к стабильному, или ее поведение меняется с простого на хаотическое, или можно даже сравнить с ракетным кораблем, который замедляется и идет ниже скорости отрыва, и занимает орбиту вокруг какой-нибудь звезды или другого небесного объекта. В отличие от них, фотоны (которые невесомы) такой переход не осуществляют: они просто пересекают пространство без изменений до тех пор, пока не взаимодействуют с другими частицами и не исчезают. Если вы посмотрите в ночное небо, фотоны от некоторых звезд без изменений пролетают долгие световые годы, затем взаимодействуют с электроном в молекуле вашей сетчатки, испуская свою энергию, а затем исчезая.

В 1803 году Томас Юнг направил пучок света на непрозрачную ширму с двумя прорезями. Вместо ожидаемых двух полосок света на проекционном экране он увидел несколько полос, как если бы произошла интерференция (наложение) двух волн света из каждой прорези. Фактически именно в этот момент зародилась квантовая физика, вернее вопросы у её основы. В XX и XXI веках было показано, что не только свет, но любая одиночная элементарная частица и даже некоторые молекулы ведут себя как волна, как кванты, будто проходя через обе щели одновременно. Однако если поставить у щелей датчик, который определяет, что именно происходит с частицей в этом месте и через какую именно щель она все-таки проходит, то на проекционном экране появляются только две полосы, словно факт наблюдения (косвенного влияния) рушит волновую функцию и объект ведет себя как материя. ( видео)

Принципа неопределенности Гейзенберга – фундамент квантовой физики!

Благодаря открытию 1927 года тысячи ученых и студентов повторяют один и тот же простой эксперимент, пропуская лазерный луч через сужающуюся щель. Логично, видимый след от лазера на проекционном экране становится все уже и уже вслед за уменьшением зазора. Но в определенный момент, когда щель становится достаточно узкой, пятно от лазера вдруг начинает становиться шире и шире, растягиваясь по экрану и тускнея пока щель не исчезнет. Это самое очевидное доказательство квинтэссенции квантовой физики - принципа неопределенности Вернера Гейзенберга, выдающегося физика-теоретика. Суть его в том, что чем точнее мы определяем одну из парных характеристик квантовой системы, тем более неопределенней становится вторая характеристика. В данном случае, чем точнее мы определяем сужающейся щелью координаты фотонов лазера, тем неопределеннее становится импульс этих фотонов. В макромире мы точно также можем измерить либо точное местоположение летящего меча, взяв его в руки, либо его направление, но никак не одновременно, так как это противоречит и мешает друг другу. ( , видео)

Квантовая сверхпроводимость и эффект Мейснера

В 1933 году Вальтер Мейснер обнаружил интересное явление в квантовой физике: в охлажденном до минимальных температур сверхпроводнике магнитное поле вытесняется за его пределы. Это явление получило название эффект Мейснера. Если обычный магнит положить на алюминий (или другой сверхпроводник), а затем его охладить жидким азотом, то магнит взлетит и зависнет в воздухе, так как будет «видеть» вытесненное из охлажденного алюминия свое же магнитное поле той же полярности, а одинаковые стороны магнитов отталкиваются. ( , видео)

Квантовая сверхтекучесть

В 1938 году Петр Капица охладил жидкий гелий до близкой к нулю температуры и обнаружил, что у вещества пропала вязкость. Это явление в квантовой физике получило название сверхтекучесть. Если охлажденный жидкий гелий налить на дно стакана, то он все равно вытечет из него по стенкам. Фактически, пока гелий достаточно охлажденный для него нет пределов, чтобы разлиться, вне зависимости от формы и размера емкости. В конце XX и начале XXI веков сверхтекучесть при определенных условиях была также обнаружена у водорода и различных газов. ( , видео)

Квантовый туннелинг

В 1960 году Айвор Джайевер проводил электрические опыты со сверхпроводниками, разделенными микроскопической пленкой непроводящего ток оксида алюминия. Выяснилось, что вопреки физике и логике часть электронов все равно проходит через изоляцию. Это подтвердило теорию о возможности квантового туннельного эффекта. Он распространяется не только на электричество, но и любые элементарные частицы, они же волны согласно квантовой физике. Они могут проходить препятствия насквозь, если ширина этих препятствий меньше длины волны частицы. Чем препятствие уже, тем чаще частицы проходят сквозь них. ( , видео)

Квантовая запутанность и телепортация

В 1982 году физик Ален Аспэ, будущий лауреат Нобелевской премии, направил два одновременно созданных фотона на разнонаправленные датчики определения их спина (поляризации). Оказалось, что измерение спина одного фотона мгновенно влияет на положение спина второго фотона, который становится противоположным. Так была доказана возможность квантовой запутанности элементарных частиц и квантовая телепортация. В 2008 году ученым удалось измерить состояние квантово-запутанных фотонов на расстоянии 144 километров и взаимодействие между ними все равно оказалось мгновенным, как если бы они были в одном месте или не было пространства. Считается, что если такие квантово-запутанные фотоны окажутся в противоположных участках вселенной, то взаимодействие между ними все равно будет мгновенным, хотя свет это же расстояние преодолевает за десятки миллиардов лет. Любопытно, но согласно Эйнштейну для летящих со скоростью света фотонов времени тоже нет. Совпадение ли это? Так не думают физики будущего! ( , видео)

Квантовый эффект Зенона и остановка времени

В 1989 году группа ученых под руководством Дэвида Вайнленда наблюдала за скоростью перехода ионов бериллия между атомными уровнями. Выяснилось, что сам факт измерения состояния ионов замедлял их переход между состояниями. В начале XXI века в подобном эксперименте с атомами рубидия удалось достичь 30-кратного замедления. Все это является подтверждением квантового эффект Зенона. Его смысл в том, что сам факт измерения состояния нестабильной частицы в квантовой физике замедляет скорость ее распада и в теории может его полностью остановить. ( , видео англ.)

Квантовый ластик с отложенным выбором

В 1999 году группа ученых под руководствам Марлана Скали направляла фотоны через две щели, за которыми стояла призма, конвертирующая каждый выходящий фотон в пару квантово-запутанных фотонов и разделяя их на два направления. Первое отправляло фотоны на основной детектор. Второе направление отправляла фотоны на систему 50%-отражателей и детекторов. Выяснилось, если фотон из второго направления достигал детекторы определяющие щель, из которой он вылетел, то основной детектор фиксировал его парный фотон как частицу. Если же фотон из второго направления достигал детекторы не определяющие щель, из которой он вылетел, то основной детектор фиксировал его парный фотон как волну. Не только измерение одного фотона отражалось на его квантово-запутанной паре, но и это происходило вне расстояния и времени, ведь вторичная система детекторов фиксировала фотоны позже основного, как если бы будущее определяло прошлое. Считается, что это самый невероятный эксперимент не только в истории квантовой физики, но и вполне в истории всей науки, так как он подрывает многие привычные основы мировоззрения. ( , видео англ.)

Квантовая суперпозиция и кот Шредингера

В 2010 году Аарон О’Коннелл поместил небольшую металлическую пластину в непрозрачную вакуумную камеру, которую охладил почти до абсолютного нуля. Затем он придал импульс пластине, чтобы она вибрировала. Однако датчик положения показал, что пластина вибрировала и была спокойна одновременно, что точно соответствовало теоретической квантовой физике. Этим впервые был доказан принцип суперпозиции на макрообъектах. В изолированных условиях, когда не происходит взаимодействия квантовых систем, объект может одновременно находиться в неограниченном количестве любых возможных положений, как если бы он больше не был материальным. ( , видео)

Квантовый Чеширский кот и физика

В 2014 году Тобиас Денкмайр и его коллеги разделили поток нейтронов на два пучка и провели серию сложных измерений. Выяснилось, что при определенных обстоятельствах нейтроны могут находиться в одном пучке, а их же магнитный момент в другом пучке. Таким образом был подтвержден квантовый парадокс улыбки Чеширского кота, когда частицы и их свойства могут находиться по нашему восприятию в разных частях пространства, как улыбка отдельно от кота в сказки «Алиса в стране чудес». В очередной раз квантовая физика оказалась загадочней и удивительней любой сказки! ( , видео англ .)

Спасибо за чтение! Теперь вы стали немного умнее и от этого наш мир чуточку посветлел. Поделитесь ссылкой на эту статью с друзьями и мир станет еще лучше!

29.10.2016

Несмотря на звучность и загадочность сегодняшней темы, мы постараемся рассказать, что изучает квантовая физика, простыми словами , какие разделы квантовой физики имеют место быть и зачем нужна квантовая физика в принципе.

Предлагаемый ниже материал доступен для понимания любому .

Прежде чем разглагольствовать о том, что изучает квантовая физика, будет уместно вспомнить, с чего же все начиналось…

К середине XIX века человечество вплотную занялось изучением проблем, решить которые посредством привлечения аппарата классической физики было невозможно.

Ряд явлений казались «странными». Отдельные вопросы вообще не находили ответа.

В 1850-е годы Уильям Гамильтон, полагая, что классическая механика не способна точно описать движение световых лучей, предлагает собственную теорию, вошедшую в историю науки под названием формализм Гамильтона-Якоби, в основе которой лежал постулат о волновой теории света.

В 1885 г., поспорив с приятелем, швейцарский и физик Иоганн Бальмер вывел эмпирически формулу, которая позволяла рассчитать длины волн спектральных линий с очень высокой точностью.

Объяснить причины выявленных закономерностей Бальмер тогда так и не смог.

В 1895 г. Вильгельм Рентген при исследовании катодных лучей открыл излучение, названное им X-лучами (впоследствии переименованными в лучи), характеризовавшееся мощным проникающим характером.

Еще через год – в 1896 году – Анри Беккерель, изучая соли урана, открыл самопроизвольное излучение с аналогичными свойствами. Новое явление было названо радиоактивностью.

В 1899 году была доказана волновая природа рентгеновских лучей.

Фото 1. Родоначальники квантовой физики Макс Планк, Эрвин Шредингер, Нильс Бор

1901-ый год ознаменовался появлением первой планетарной модели атома, предложенной Жаном Перреном. Увы, ученый сам же отказался от этой теории, не найдя ей подтверждения с позиций теории электродинамики.

Спустя два года ученый из Японии Хантаро Нагаока предложил очередную планетарную модель атома, в центре которого должна была находиться положительно заряженная частица, вокруг которой по орбитам вращались бы электроны.

Эта теория, однако, не учитывала излучение, испускаемое электронами, а потому не могла, например, объяснить теорию спектральных линий.

Размышляя над строением атома, в 1904 году Джозеф Томсон впервые интерпретировал понятие валентности с физической точки зрения.

Годом рождения квантовой физики, пожалуй, можно признать 1900-ый, связывая с ним выступление Макса Планка на заседании Немецкого физического .

Именно Планк предложил теорию, объединившую множество доселе разрозненных физических понятий, формул и теорий, включая постоянную Больцмана, увязывающую энергию и температуру, число Авогадро, закон смещения Вина, заряд электрона, закон излучения -Больцмана…

Им же введено в обиход понятие кванта действия (вторая – после постоянной Больцмана – фундаментальная постоянная).

Дальнейшее развитие квантовой физики напрямую связано с именами Хендрика Лоренца, Альберта Эйнштейна, Эрнста Резерфорда, Арнольда Зоммерфельда, Макса Борна, Нильса Бора, Эрвина Шредингера, Луи де Бройля, Вернера Гейзенберга, Вольфганга Паули, Поля Дирака, Энрико Ферми и многих других замечательных ученых, творивших в первой половине XX века.

Ученым удалось с небывалой глубиной познать природу элементарных частиц, изучить взаимодействия частиц и полей, выявить кварковую природу материи, вывести волновую функцию, объяснить фундаментальные понятия дискретности (квантования) и корпускулярно-волнового дуализма.

Квантовая теория как никакая другая приблизила человечество к пониманию фундаментальных законов мироздания, заменила привычные понятия более точными, заставила переосмыслить огромное число физических моделей.

Что изучает квантовая физика?

Квантовая физика описывает свойства материи на уровне микроявлений, исследуя законы движения микрообъектов (квантовых объектов).

Предмет изучения квантовой физики составляют квантовые объекты, обладающие размерами 10 −8 см и меньше. Это:

  • молекулы,
  • атомы,
  • атомные ядра,
  • элементарные частицы.

Главные характеристики микрообъектов — масса покоя и электрический заряд. Масса одного электрона (me) равна 9,1 · 10 −28 г.

Для сравнения – масса мюона равна 207 me, нейтрона – 1839 me, протона 1836 me.

Некоторые частицы вообще не имеют массы покоя (нейтрино, фотон). Их масса составляет 0 me.

Электрический заряд любого микрообъекта кратен величине заряда электрона, равного 1,6 · 10 −19 Кл. Наряду с заряженными существуют нейтральные микрообъекты, заряд которых равен нулю.

Фото 2. Квантовая физика заставила пересмотреть традиционные взгляды на понятия волны, поля и частицы

Электрический заряд сложного микрообъекта равен алгебраической сумме зарядов составляющих его частиц.

К числу свойств микрообъектов относится спин (в дословном переводе с английского — «вращаться»).

Его принято интерпретировать как не зависящий от внешних условий момент импульса квантового объекта.

Спину сложно подобрать адекватный образ в реальном мире. Его нельзя представлять вращающимся волчком из-за его квантовой природы. Классическая физика описать этот объект не способна.

Присутствие спина влияет на поведение микрообъектов.

Наличие спина вносит существенные особенности в поведение объектов микромира, большая часть которых – нестабильных объектов — самопроизвольно распадается, превращаясь в другие квантовые объекты.

Стабильные микрообъекты, к которым относят нейтрино, электроны, фотоны, протоны, а также атомы и молекулы, способны распадаться лишь под воздействием мощной энергии.

Квантовая физика полностью вбирает в себя классическую физику, рассматривая ее своим предельным случаем.

Фактически квантовая физика и является – в широком смысле – современной физикой.

То, что описывает квантовая физика в микромире, воспринять невозможно. Из-за этого многие положения квантовой физики трудно представимы, в отличие от объектов, описываемых классической физикой.

Несмотря на это новые теории позволили изменить наши представления о волнах и частицах, о динамическом и вероятностном описании, о непрерывном и дискретном.

Квантовая физика – это не просто новомодная теория.

Это теория, которая сумела предсказать и объяснить невероятное количество явлений – от процессов, протекающих в атомных ядрах, до макроскопических эффектов в космическом пространстве.

Квантовая физика – в отличие от физики классической – изучает материю на фундаментальном уровне, давая интерпретации явлениям окружающей действительности, которые традиционная физика дать не способна (например, почему атомы сохраняют устойчивость или действительно ли элементарные частицы являются элементарными).

Квантовая теория дает нам возможность описывать мир более точно, нежели это было принято до ее возникновения.

Значение квантовой физики

Теоретические наработки, составляющие сущность квантовой физики, применимы для исследования как невообразимо огромных космических объектов, так и исключительно малых по размерам элементарных частиц.

Квантовая электродинамика погружает нас в мир фотонов и электронов, делая акцент на изучении взаимодействий между ними.

Квантовая теория конденсированных сред углубляет наши познания о сверхтекучих жидкостях, магнетиках, жидких кристаллах, аморфных телах, кристаллах и полимеров.

Фото 3. Квантовая физика дала человечеству гораздо более точное описание окружающего мира

Научные исследования последних десятилетий сосредоточены на изучении кварковой структуры элементарных частиц в рамках самостоятельной ветви квантовой физики – квантовой хромодинамики .

Нерелятивистская квантовая механика (та, что находится за рамками теории относительности Эйнштейна) изучает микроскопические объекты, движущиеся с условно невысокой скоростью (меньше, чем ), свойства молекул и атомов, их строение.

Квантовая оптика занимается научной проработкой фактов, сопряженных с проявлением квантовых свойств света (фотохимических процессов, теплового и вынужденного излучений, фотоэффекта).

Квантовая теория поля является объединяющим разделом, вобравшим в себя идеи теории относительности и квантовой механики.

Научные теории, разработанные в рамках квантовой физики, придали мощный импульс развитию , квантовой электроники, техники, квантовой теории твердого тела, материаловедения, квантовой химии.

Без появления и развития отмеченных отраслей знания было бы невозможно создание , космических кораблей, атомных ледоколов, мобильной связи и многих других полезных изобретений.

Поделиться