Вероятностный эксперимент. Предмет и задачи теории вероятностей. Случайные события

Базовые понятия 1 ТВ


Базовые понятия (часть1) по курсу Теория вероятностей

  1. Модель случайного эксперимента.

  2. События (случайные события) и их свойства.

  3. Вероятность и её свойства.

  4. Условная вероятность.

  5. Независимость событий.

  6. Формула полной вероятности.

  7. Формула Байеса.

  1. Модель случайного эксперимента, вероятностное пространство.
Случайный эксперимент обладает свойством статистической устойчивости : испытания могут потенциально проводиться неограниченное количество раз в идентичных условиях, при каждом испытании можно зафиксировать однозначно непредсказуемый заранее элементарный исход.

Модель такого эксперимента - согласованная тройка объектов (Ω , А ):

Ω = { ω } - пространство элементарных исходов, совокупность всех возможных элементарных исходов эксперимента. Различные элементарные исходы не пересекаются, они не могут произойти в эксперименте одновременно.

А = { А,В,… } - класс событий, полный набор интересующих нас событий.
Каждое событие – это некоторое подмножество возможных элементарных исходов эксперимента.

Р - вероятностная мера событий эксперимента.
Для каждого события А определена его вероятность Р (А ), вычисляемая по единому правилу.


  1. Свойства событий:
Мы говорим, что в эксперименте произошло событие А , если эксперимент привел к элементарному исходу входящему в А .

Полнота класса событий А означает:

А) с каждым событием A мы рассматриваем и его дополнение - событие, состоящее из всех возможных элементарных исходов эксперимента не вошедших в событие А ;

Б) вместе с любыми двумя событиями А и В мы рассматриваем их объединение
, и пересечение
.

Следствия:



называют достоверным событием, а называют невозможным событием.

Если = , то события А и В называют несовместными.


  1. Свойства вероятностей:


Способы задания вероятностной меры.

  • Классическая вероятность . Если
а) Количество элементов Ω конечно (Ω ), Ω  = n .

Б) Все элементарные исходы события (элементарные события ), ω А .

В) Вероятности всех элементарных событий равны (равномерная вероятностная мера ), Р (ω ) = 1 / n .

Тогда вероятность любого события А определяется как доля количества элементарных исходов в А (А ) от количества элементарных исходов в Ω . Р (А ) = А Ω  .


  • Геометрическая вероятность . Если на пространстве элементарных исходов Ω задана конечная неотрицательная мера s (· ), тогда вероятность любого события А определяется как отношение меры А, s (А ), к мере Ω , s (Ω ). Р (А ) = s (А ) s (Ω ).

  • Плотность распределения. Если
а) Пространство элементарных исходов точки числовой оси (Ω = R ) или её части.

Б) Задана неотрицательная функция р (ω ), (р (ω ) 0 ), с площадью (s (· )) фигуры V Ω , ограниченной графиком р (ω ) и числовой осью Ω , равной 1 (s (V Ω ) = 1).

А) Функция р (ω ) называется плотностью распределения.

Б) Вероятность любого события А Ω задаётся площадью s (V А ) фигуры, ограниченной графиком р (ω ) на части А числовой оси и числовой осью Ω . Р (А ) = s (V А ).


  1. Условная вероятность.
Вероятностью события А , при условии, что произошло событие В , (Р (В )>0 ) называют число [ Р (А В ) ⁄ Р (В )] и обозначают его следующим образом Р В (А ) или Р (А В ), то есть:
Р В (А )= Р (А В )=[ Р (А В ) ⁄ Р (В )] . При этом 0 Р В (А ) ≤ 1, т.к. (А В ) ⊆ В и Р (В )>0 .

  1. Независимость событий.
События А и В независимы, если Р (А В ) = Р (А ) · Р (В ).

Три события независимы в совокупности, если:
а) каждые два из них независимы, и
б) объединение каждых двух событий независимо с третьим событием.

Аналогично распространяется понятие независимости в совокупности на большее число событий.


  1. Полная группа событий.
Если события Н 1 , Н 2 ,… , Н к ,… таковы, что их объединение (Н 1 Н 2 …Н к …)=Ω и они попарно несовместны (не пересекаются), (Н i Н j = Ø), то эти события образуют полную группу событий.

  1. Формула полной вероятности.
Если события Н 1 , Н 2 ,… , Н к ,… образуют полную группу событий , то справедлива формула полной вероятности :

Р (А )) = i [P (Н i )· Р (А Н i )].

Вероятность события можно вычислять как взвешенную сумму условных вероятностей этого события при условии, что происходили события из полной группы событий, где в качестве весовых коэффициентов берутся вероятности соответствующих событий из полной группы.


  1. Формула Байеса.
Если события Н 1 , Н 2 ,… , Н к ,… образуют полную группу событий , то справедлива формула Байеса для пересчета вероятностей событий образующих полную группу по результатам испытания, в котором реализовалось событие А.

Р А (Н к ) = (Р (А Н к )) (Р (А )) = (Р (А Н к )) ⁄ ( i [P (Н i )· Р (А Н i )]).


  1. Типовые модели случайного эксперимента.
В (p ). Модель Бернулли с параметром p , испытание Бернулли с параметром p , 0 p ≤1.
Эксперимент с двумя альтернативными событиями - исходами У (успех) и Н (неудача).
Р (У) = p , Р (Н) = q = 1p .

У(2) . Простейшая Урновая модель .

Извлечение шара из урны с двумя шарами. Модель эквивалентна модели Бернулли В (½).

У(n ) илиR (n ). Классическая Урновая модель .

Извлечение шара из урны с n перенумерованными шарами. Элементарный исход – элементарное событие – номер извлеченного шара. Классическая вероятность с равномерным распределением вероятностей элементарных событий.

У(n ; m ) . Урновая модель.
Извлечение шара из урны с m белыми и (n m ) черными шарами.
Модель эквивалентна модели Бернулли В (m / n ).


  1. Последовательность случайных экспериментов.
В (n ; p ). Биномиальная модель . n последовательныхнезависимых испытаний Бернулли с параметром p .

У (n *n ). Последовательное извлечение с возвращением двух шаров из урны с n шарами.

У (2 * 2). Последовательное извлечение с возвращением двух шаров из урны с двумя шарами. Модель эквивалентна Биномиальной модели В (2; p ).

У(n *(n -1)). Последовательное извлечение без возвращения двух шаров из урны с n шарами.

Результат которого невозможно точно предсказать. Математическая модель должна удовлетворять требованиям:

Наблюдаемый результат.

- относительная частота реализаций эксперимента .

Точное описание природы случайного эксперимента влечет определение элементарных исходов , случайных событий и их вероятности , случайных величин и т. п.


Wikimedia Foundation . 2010 .

Смотреть что такое "Случайный эксперимент" в других словарях:

    У этого термина существуют и другие значения, см. Эксперимент (значения). Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения должны быть пояснения … Википедия

    Эрвин Шрёдингер Кот Шрёдингера (кошка Шрёдингера) герой кажущегося парадоксальным мысленного эксперимента Эрвина Шрёдингера, которым он хотел продемонстрировать неполноту квантовой механики при переходе от субатомных систем к макроскопическим … Википедия

    Эксперимент - (лат. experimentum опыт, доказательство) 1) следственный, самостоятельное следственное действие. Состоит в воспроизведении обстановки и иных обстоятельств определенного события и совершении необходимых опытных действий в целях проверки… … Криминалистическая энциклопедия

    ЭКСПЕРИМЕНТ в социальных дисциплинах - один из методов эмпирических исследований, применяемый с целью исследования причинных связей или проверки гипотезы. Он является основой так называемых каузальных исследований. История Э. начинается с работ Дж.С. Милля. Милль исходил из того, что … Социология: Энциклопедия

    Заданное множество, конечное или бесконечное. Любой случайный эксперимент можно интерпретировать как случайный выбор индивидуума из бесконечной Г. с. При статистическом изучении из Г. с., характеризуемой функцией распределения вероятностей,… … Геологическая энциклопедия

    Случайное событие подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности. Случайное событие, которое никогда не реализуется в… … Википедия

    Функция вероятности … Википедия

    Парадокс Эйнштейна Подольского Розена (ЭПР парадокс) попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот… … Википедия

    ГОСТ 24026-80: Исследовательские испытания. Планирование эксперимента. Термины и определения - Терминология ГОСТ 24026 80: Исследовательские испытания. Планирование эксперимента. Термины и определения оригинал документа: 34. Адекватность математической модели Адекватность модели Соответствие математической модели экспериментальным данным… …

    РДМУ 109-77: Методические указания. Методика выбора и оптимизации контролируемых параметров технологических процессов - Терминология РДМУ 109 77: Методические указания. Методика выбора и оптимизации контролируемых параметров технологических процессов: 73. Адекватность модели Соответствие модели с экспериментальными данными по выбранному параметру оптимизации с… … Словарь-справочник терминов нормативно-технической документации


§1. Что изучает и когда возникла теория вероятностей. Понятие случайного эксперимента. Пространство элементарных исходов. Типы и примеры. Элементы комбинаторики. Понятие события.

Историческая справка:

Исторически теория вероятностей возникла как теория азартных игр (рулетка, игральные кости, карты и т.д.). в конце 17 века. Начало её развития связано с именами Паскаля, Бернулли, Муавра, Лапласа, а позднее (начало 19 века) – Гаусса и Пуассона.

Первые исследования по теории вероятностей в России относятся к середине 19 века и связаны с именами таких выдающихся математиков, как Н.И. Лобачевский, М.В. Остроградский, В.Я. Буняковский (одним из первых издал учебник с приложениями в страховом деле и демографии).

Дальнейшее развитие теории вероятностей (конец 19 и двадцатые годы 20 века) в основном связано с именами русских учёных Чебышева, Ляпунова и Макарова. С 30-х годов 20 века этот раздел математики переживает период расцвета, находя приложения в различных областях науки и техники. В это время российские учёные Бернштейн, Хинчин и Колмогоров вносят существенный вклад в развитие теории вероятностей. Именно Колмогоров в возрасте 30 лет в 1933 году предложил аксиоматическое построение теории вероятностей, установив её связь с другими разделами математики (теорией множеств, теорией меры, функциональным анализом).

Теория вероятностей является разделом математики, в котором изучаются математические модели случайных экспериментов , т.е. экспериментов, исходы которых нельзя определить однозначно условиями проведения опыта. При этом предполагается, что сам эксперимент может быть повторен (хотя бы в принципе) любое число раз при неизменном комплексе условий, а исходы эксперимента обладают статистической устойчивостью.

Понятие случайного эксперимента

Примеры случайных экспериментов:

1. Однократное подбрасывание монеты.

2.Однократное подбрасывание игральной кости.

3. Случайный выбор шара из урны.

4. Измерение времени безотказной работы электрической лампочки.

5. Измерение числа вызовов, поступающих на АТС за единицу времени.

Эксперимент является случайным, если нельзя предсказать исход не только первого опыта, но и всех дальнейших . Например, проводится некоторая химическая реакция, исход которой неизвестен. Если её один раз провести и получить определённый результат, то при дальнейшем проведении опыта в одних и тех же условиях случайность исчезает.

Примеров такого рода можно привести сколь угодно много. В чём же состоит общность опытов со случайными исходами? Оказывается, несмотря на то, что результата каждого из перечисленных выше экспериментов предсказать невозможно, на практике для них уже давно была замечена закономерность определённого вида, а именно: при проведении большого количества испытаний наблюдённые частоты появления каждого случайного события стабилизируются, т.е. всё меньше отличаются от некоторого числа, называемого вероятностью события.

Наблюдённой частотой события А ()называется отношение числа появлений события А (
) к общему числу испытаний (N):

Например, при бросании правильной монеты дробь

при

(
-количество орлов, N –общее число бросаний )

Такое свойство устойчивости частоты позволяет, не имея возможности предсказать исход отдельного опыта достаточно точно прогнозировать свойства явлений, связанных с рассматриваемым опытом. Поэтому методы теории вероятностей в современной жизни проникли во все сферы деятельности человека, причём не только в естественнонаучные, экономические, но и гуманитарные, такие, как история, лингвистика и т.д. На этом подходе основано статистическое определение вероятности .

при (наблюденная частота события стремится к его вероятности при росте количества опытов, то есть при n
).

Определение 1.1: Элементарным исходом (или элементарным событием) называют любой простейший (т.е. неделимый в рамках данного опыта) исход опыта. Множество всех элементарных исходов будем называть пространством элементарных исходов .

Пример построения пространства элементарных исходов:

Рассмотрим следующий случайный эксперимент: однократное подбрасывание игральной кости, наблюдаем число очков выпавших на верхней грани. Построим для него пространство элементарных исходов:

Содержит все варианты, появление каждого варианта исключает появление остальных, все варианты неделимы.

Пространство элементарных исходов (типы и примеры к каждому типу):

Рассмотрим следующую схему

Дискретные пространства – это пространства, в которых можно выделить отдельные исходы. В дискретных конечных можно точно указать их число.

Примеры дискретных пространств элементарных исходов

    Эксперимент: однократное подбрасывание монеты

, где

Можно включить в пр-во э.и. вариант падения монеты на ребро, но мы его исключаем из модели как маловероятный (каждая модель – это некоторое приближение)

Если монета правильная, т.е. у неё везде одинаковая плотность и несмещённый центр тяжести, то исходы «герб» и «решка» имеют равные шансы на появление. Если у монеты смещён центр тяжести, то, соответственно, исходы имеют разные шансы на появление.

Замечание : если в задаче про монету ничего не говорится, то она предполагается правильной.

    Эксперимент: однократное подбрасывание двух монет.

Замечание: Если монеты одинаковы, то исходы РГ и ГР визуально неразличимы. Можно пометить одну из монет краской и тогда они будут визуально различаться.

Модель можно строить по-разному:

либо мы различаем исходы РГ, ГР и тогда у нас получается 4 вар-та

, где

В этом случае, если обе монеты правильные, все варианты имеют равные шансы на появление.

либо мы не различаем варианты РГ и ГР и тогда у нас получается 3 вар-та.

, где

В этом случае, если обе монеты правильные, вариант РГ имеет больший шанс на появление, чем варианты ГГ и РР, т.к. он реализуется двумя способами: герб на первой монете и решка на второй и наоборот.

    Эксперимент: случайный выбор из группы студентов, состоящей из 20 человек, 5 человек для поездки на конференцию . Результат эксперимента: конкретная пятёрка. При выборе нам важен только состав, т.е. не важно кого мы выбрали первого, а кого второго и т.д. При этом

(столько «пятёрок» различных по составу можно получить из 20 человек) (факториал)

Ответ на этот вопрос опять даёт наука комбинаторика.

(

Все 15504 варианта имеют равные шансы на появлении, т.к. выбор случаен.

    Эксперимент: случайный выбор из группы студентов, состоящей из 20 человек, 5 человек для премирования премиями различными по сумме . Результат эксперимента : конкретная упорядоченная пятёрка. При выборе нам важен не только состав, но и порядок выбора, т.к. от того каким человек выбран зависит размер премии.

1860480 (столько упорядоченных различных «пятёрок» можно получить из 20 человек).

Ответ на этот вопрос опять даёт наука комбинаторика.

(

Все 1860480 вариантов имеют равные шансы на появлении, т.к. выбор случаен.

Понятно, что упорядоченных «пятёрок» будет больше, чем не упорядоченных, т.к. при одном и том же составе может быть несколько вариантов порядка: в данном случае в каждом составе из 5 человек возможно 120 различных вариантов порядка.

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ

Обобщённое правило умножения:

Пусть нужно совершить m независимых действий причём первое действие можно совершить способами, второе - способами и т.д. …. m -ое действие
способами. Тогда всю последовательность действий можно осуществить

способами

Перестановки .

Перестановкой из n элементов называется любой упорядоченный набор из этих элементов.

-число перестановок из n элементов

Объяснение: первый элемент можно выбрать n способами, второй – n-1 и т.д. последний элемент – одним способом, а перемножаются они исходя из правила обобщённого умножения

Размещения.

Размещением из n по m называется любой упорядоченный набор из m элементов выбранных случайным образом из генеральной совокупности, содержащей n элементов (m

Число размещений из n элементов по m (число вариантов такого упорядоченного выбора).

Объяснение: первый элемент можно выбрать n способами, второй – n-1 и т.д. , а перемножаются они исходя из правила обобщённого умножения.

Сочетания.

Сочетанием из n по m называется любой неупорядоченный набор из m элементов выбранных случайным образом из генеральной совокупности, содержащей n элементов.

Сочетания и размещения связаны следующим образом:

(на каждый состав из m элементов мы имеем m! упорядоченных наборов). Таким образом,

число сочетаний из n элементов по m (число вариантов такого не упорядоченного выбора

Пример непрерывного пространства элементарных исходов

Эксперимент: двое человек назначают встречу в определённом месте межу 12 и 13 часами, и каждый из них может прийти в рамках этого времени в любой случайный момент. Отслеживаем моменты их прихода. Каждый вариант прихода 2 –ух человек – это точка из квадрата со стороной 60 (т.к. в часе 60 минут).

(первый может прийти в 12 часов x минут, второй в 12 часов y минут). Все точки из квадрата нельзя не пересчитать, не перенумеровать. В этом состоит его непрерывная структура и, следовательно, в данном эксперименте непрерывное пространство элементарных исходов.

События и операции над ними:

Определение 1.2

Любой набор элементарных исходов называют событием. С обытия обозначаются большими латинскими буквами A,B,C или буквами с индексами A 1 ,A 2 ,A 3 и т.д.

Часто используется следующая терминология: говорят, что произошло (или наступило) событие А, если в результате опыта появился какой-либо из элементарных исходов
.

Примеры событий

Вернёмся к эксперименту, состоящему в подбрасывании игральной кости. Рассмотрим следующие события:

A={выпадение чётного числа очков}

В={выпадение нечётного числа очков}

C={выпадение числа очков кратного 3}

Тогда, согласно введённым ранее обозначениям,


Определение 1.3

Событие, состоящее из всех элементарных исходов, т.е. событие, которое обязательно происходит в данном опыте, называют достоверным . Его обозначают также как и пространство элементарных исходов.

Пример достоверного события : при бросании игральной кости выпадает не больше 6 очков или при бросании игральной кости выпадёт хотя бы одно очко.

Определение 1.4

Событие, не содержащее ни одного элементарного исхода, т.е. событие, которое никогда не происходит в данном опыте, называют невозможным. Его обозначают символом .

Пример невозможного события: при бросании двух игральных костей сумма выпавших очков будет равна 20.

Операции над событиями:



фразе произошло хотя бы одно из событий А или В).


Определение 1.5 События А и В называют несовместными, если их пересечением является невозможное событии, т.е. AB=.

Пример задачи на операции над событиями:

По мишени производят три выстрела. Рассмотрим события

{Попадание при i-ом выстреле}, i=1..3

Выразить с помощью теоретико-множественных операций через события A i следующие события:

А={три попадания}=

B={три промаха}=

C={хотя бы одно попадание}=

D={хотя бы один промах}=

E={не менее двух попаданий}=
+
+
+

F={не больше одного попадания}=
+
+
+

G={попадание в мишень не раньше, чем при третьем выстреле}=

Идея : дальше будут задачи такого типа: вероятности событий даны и требуется, зная эти вероятности, найти вероятности событий A, B, C, D, E, F, G

§2. ПОНЯТИЕ ВЕРОЯТНОСТИ

Для количественного сравнения шансов наступления событий вводится понятие вероятности.

Определение 2.1 Пусть каждому событию A поставлено в соответствие число P (A ). Числовую функцию P называют вероятностью или вероятностной мерой , если она удовлетворяет следующим аксиомам:

Аксиома неотрицательности

Аксиома нормированности

Аксиома сложения (расширенная) изучается некоторое случайное событие ...

  • Документ

    Добавился новый тип ошибок – недостаточное количество элементов . В результате проведенных экспериментов выяснено, что дети, страдающие... конкретными примерами . Изучая характер влияния на произвольное внимание детей специального обучения элементарным ...

  • Образовательная программа основного общего образования Муниципального бюджетного общеобразовательного учреждения

    Образовательная программа

    Результатов (исходов ) простейших случайных экспериментов ; находить вероятности простейших случайных событий ; ... Элементы логики, статистики,

  • Вероятностное пространство - это математическая модель случайного эксперимента (опыта) в аксиоматике А. Н. Колмогорова. Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, необходимую для его математического анализа средствами теории вероятностей. Любая задача теории вероятностей решается в рамках некоторого вероятностного пространства, полностью заданного изначально. Задачи, в которых вероятностное пространство задано не полностью, а недостающую информацию следует получить по результатам наблюдений, относятся к области математической статистики.

    Определение

    Вероятностное пространство - это тройка , где:

    Заметим, что последнее свойство сигма-аддитивности меры эквивалентно (при условии выполнения всех прочих свойств, в том числе конечной аддитивности) любому из следующих свойств непрерывности меры :

    Примеры наиболее часто использующихся вероятностных пространств

    Дискретные вероятностные пространства

    Если множество элементарных исходов конечно или счетно: , то соответствующее вероятностное пространство называется дискретным . В случае дискретных вероятностных пространств событиями обычно считают все возможные подмножества . В этом случае для задания вероятности необходимо и достаточно приписать каждому элементарному исходу число так, чтобы их сумма была равна 1. Тогда вероятность любого события задается следующим образом:

    Важным частным случаем такого пространства является классический способ задания вероятностей , когда количество элементарных исходов конечно и все они имеют одинаковую вероятность. Тогда вероятность любого события определяется как отношение его мощности (т.е. количества элементарных исходов, благоприятствующих данному событию) к общему числу элементарных исходов:

    .

    Однако всегда необходимо помнить, что для того, чтобы применять данный способ, необходимо убедиться в том, что элементарные исходы действительно равновероятны. Это должно либо быть сформулировано как исходное условие, либо этот факт следует строго вывести из имеющихся начальных условий.

    Вероятностные пространства на прямой

    Вероятностные пространства на прямой () естественным образом возникают при изучении случайных величин . При этом в общем случае уже не получается рассматривать в качестве событий любые подмножества прямой, поскольку на таком широком классе обычно нельзя задать вероятностную меру, удовлетворяющую необходимым аксиомам. Универсальная сигма-алгебра событий, достаточная для работы - это сигма-алгебра борелевских множеств : наименьшая сигма-алгебра, содержащая все открытые множества. Эквивалентное определение - наименьшая сигма-алгебра, содержащая все интервалы . Универсальный способ задания вероятностной меры на данной сигма-алгебре - через функцию распределения случайной величины.

    Вероятностные пространства в конечномерном пространстве

    Вероятностные пространства с множеством элементарных исходов естественным образом возникают при изучении случайных векторов . Универсальной сигма-алгеброй событий при этом также является борелевская сигма-алгебра , порожденная всеми открытыми множествами. Принципиально этот случай мало чем отличается от случая одной прямой.

    1. Теория вероятностей изучает эксперименты со случайными исходами.

    Эксперимент - это осуществление намеченного действия и результат такого действия.

    Результат - это исход эксперимента.

    Эксперимент случвйный, если его исход нельзя предсказать до его получения.

    Основное ограничение: Мы будем рассматривать только такие эксперименты, которые можно повторять при неизменных условиях неограниченное число раз.

    Каждую ситуацию, которую можно наблюдать в зависимости от исхода эксперимента, будем называть событием.

    Пример 1.1. Бросаем кость. Исход - то или иное число очков. Событие

    Число очков, скажем, больше 3.

    Вероятность - степень уверенности в наступлении того или иного события.

    Цель теории вероятностей - вычисление вероятностей событий, их комбинаций, а также изучение свойств вероятностей.

    2. Теория вероятностей предполагает, прежде всего, построение математической модели случайного эксперимента, которая служит описанием возможных исходов, событий, вероятностей наступления этих событий. Это описание должно быть выполнено таким образом, чтобы обеспечить возможность вычисления вероятностей комбинации событий.

    3. Построим модель случайного эксперимента.

    Множество исходов случайного эксперимента назовем пространством исходов и обозначим Пространство исходов может быть дискретным или непрерывным.

    Пример 1.2. Дискретное пространство: эксперимент - бросание кости, исход - выпадение числа очков, S = {1,2,3,4,5,6}. Непрерывное пространство: эксперимент - ожидание автобуса при условии, что ожидаешь не более минут, исход - конкретное время ожидания,

    Событие - любое подмножество пространства исходов Событие обозначим Е.

    Событие произошло, если в результате эксперимента исход X принадлежит

    Элементарное событие: оно содержит только один исход.

    Достоверное событие: оно совпадает с пространством исходов

    Невозможное событие: оно совпадает с пустым множеством.

    Противоположное событие оно состоит в том, что событие Е не произошло.

    Несовместные события: они не имеют общих исходов.

    Сумма (или объединение) событий (или ): это событие, заключающееся в том, что из двух событий А и В в результате случайного эксперимента происходит, по крайней мере, одно.

    Произведение событий (или ): это событие, заключающееся в том, что события А и В происходят одновременно.

    Мы ограничимся наименьшим классом событий, который обладает следующими свойствами:

    Пустое множество 0 принадлежит этому классу;

    Если событие Е принадлежит классу, то и противоположное событие также принадлежит классу;

    Если каждый юменг счетной последовательности событий принадлежит классу, то суммв (объединение) событий также принадлежит классу.

    Из последнего свойства вытекает, что и произведение двух событий (или счетного числа событий) принадлежит классу, если каждое событие принадлежит классу.

    Класс событий с указанными свойствами достаточен для описвния любого физического явления, возникающего в результате эксперимента. Такой класс событий назовем полем событий

    Поле - это множество событий, для которых определены операции сложения и умножения.

    Итак, мы ввели где - пространство исходов, поле событий.

    Определим вероятность события Р как число, удовлетворяющее следующим свойствам:

    Действительное число;

    Для любого

    (вероятность достоверного события);

    Для любой счетной последовательности взаимно несовместимых событий на

    Такое достаточно общее определение вероятности позволяет при рассмотрении тех или иных физических явлений конкретизировать понятие вероятности в зависимости от специфики задачи. Итак, вероятность - это функция, заданная на и принимающая значения на .

    4. Некоторые свойства вероятностей, вытекающие из определения вероятности.

    Свойство

    Доказательство.

    Но несовместимы. Следовательно, Отсюда,

    Свойство

    Доказательство.

    Несовместимы и Следовательно, Отсюда

    5. Конструктивные способы задания вероятностей.

    Наиболее трудная задача математического моделирования реальных явлений состоит в правильном задании вероятностей в зависимости от специфики явлен Такое задание должно быть конструктивным, с одной стороны, соответствовать определению вероятности, а с другой стороны - позволять решать конкретную задачу.

    5.1. Выполним эксперимент многократно и подсчитаем, сколько раз произошло событие Е. Если - общее число экспериментов, - число экспериментов, в которых произошло событие Е, то назовем относительной частотой появления события Е.

    За вероятность примем предел

    5.2. Если - пространство равновозможных несовместных исходов и - число исходов, соответствующих (благоприятствующих) событию Е, то

    где - общее число исходов.

    5.3. В том случае, если - непрерывная область, - область, благоприятствующая появлению в результате случайного эксперимента события А, за вероятность удобно принять

    где - мера области - мера области

    5.4. Пусть А и В два произвольных события. Назовем условной вероятностью отношение

    при условии

    События независимы, если

    Пример 1.3. В ящике 94 хороших болта и 6 плохих. Из ящика выбраны случайно 5 болтов. Какова вероятность Р, что все выбранные болты хорошие? .

    Пример 1.4. Три человека бросают по очереди монету до первого выпадения “орла”. Выигрывает тот, у кого выпадает “орел”. Каковы относительные шансы выигрыша каждого игрока?

    Назовем “серией” однократное бросание монеты тремя игроками, начиная с первого. Пусть - вероятность невыпадения "орла” за к серий. Тогда вероятности выигрыша каждого из трех игроков на следующей серии равны (к - произвольное число):

    вероятность выигрыша первого игрока

    вероятность выигрыша второго игрока

    вероятность выигрыша третьего игрока

    Следовательно, шансы игроков откосятся как

    Пример 1.5. В комнате находятся студенты в количестве человек. Из них курящих - человек, в очках - человек, курящих и в очках - человек. Удаляем случайным образом студента из комнаты. Курит ли он и носит ли он очки?

    Теперь предположим, что мы увидели, что удаленный студент в очках. Какова вероятность, что он и курит?

    Пример 1.6. Двое решили встретиться в условленном месте между тремя и четырьмя часами дня, причем пришедший ждет партнера не более 20 мин. Какова вероятность встречи?

    Поделиться