Формулировка теоремы пифагора. Урок "теорема- обратная теореме пифагора". Расстояние в двумерных прямоугольных системах

Замечательно, что свойство указанное в теореме Пифагора, является характеристическим свойством прямоугольного треугольника. Это следует из теоремы, обратной теореме Пифагора.

Теорема: Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.

Формула Герона

Выведем формулу, выражающую плоскость треугольника через длины его сторон. Эту формулу связывают с именем Герона александрийского - древнегреческого математика и механика, жившего, вероятно в 1 в.н.э. Герон много уделял внимания практическим приложениям геометрии.

Теорема. Площадь S треугольника, стороны которого равны a , b , c , вычисляется по формуле S=, где p - полупериметр треугольника.

Доказательство.

Дано: ?ABC, АВ= с, ВС= а, АС= b.Углы А и В, острые. СН - высота.

Доказать:

Доказательсво:

Рассмотрим треугольник ABC, в котором AB=c , BC=a, AC=b. Во всяком треугольнике, по крайней мере, два угла острые. Пусть А и В - острые углы треугольника АВС. Tогда основание H высоты CH треугольника лежит на стороне AB. Введем обозначения: CH = h, AH=y, HB=x. по теореме Пифагора a 2 - x 2 = h 2 =b 2 -y 2 , откуда

Y 2 - x 2 = b 2 - a 2 , или (y - x) (y + x) = b 2 - a 2 , а так как y + x = c, то y- x = (b2 - a2).

Складывая два последних равенства, п олучаем:

2y = +c, откуда

y=,и, значит, h 2 = b 2 -y 2 =(b - y)(b+y)=

Следовательно, h = .

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение

между сторонами прямоугольного треугольника .

Считается, что доказана греческим математиком Пифагором, в честь которого и названа.

Геометрическая формулировка теоремы Пифагора.

Изначально теорема была сформулирована следующим образом:

В прямоугольном треугольнике площадь квадрата , построенного на гипотенузе , равна сумме площадей квадратов ,

построенных на катетах.

Алгебраическая формулировка теоремы Пифагора.

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

Обе формулировки теоремы Пифагора эквивалентны, но вторая формулировка более элементарна, она не

требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и

измерив только длины сторон прямоугольного треугольника .

Обратная теорема Пифагора.

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то

треугольник прямоугольный.

Или, иными словами:

Для всякой тройки положительных чисел a , b и c , такой, что

существует прямоугольный треугольник с катетами a и b и гипотенузой c .

Теорема Пифагора для равнобедренного треугольника.

Теорема Пифагора для равностороннего треугольника.

Доказательства теоремы Пифагора.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема

Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие

можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:

доказательства методом площадей , аксиоматические и экзотические доказательства (например,

с помощью дифференциальных уравнений ).

1. Доказательство теоремы Пифагора через подобные треугольники.

Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся

напрямую из аксиом. В частности, оно не использует понятие площади фигуры.

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим

её основание через H .

Треугольник ACH подобен треугольнику AB C по двум углам. Аналогично, треугольник CBH подобен ABC .

Введя обозначения:

получаем:

,

что соответствует -

Сложив a 2 и b 2 , получаем:

или , что и требовалось доказать.

2. Доказательство теоремы Пифагора методом площадей.

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они

используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

  • Доказательство через равнодополняемость.

Расположим четыре равных прямоугольных

треугольника так, как показано на рисунке

справа.

Четырёхугольник со сторонами c - квадратом,

так как сумма двух острых углов 90°, а

развёрнутый угол — 180°.

Площадь всей фигуры равна, с одной стороны,

площади квадрата со стороной (a+b ), а с другой стороны, сумме площадей четырёх треугольников и

Что и требовалось доказать.

3. Доказательство теоремы Пифагора методом бесконечно малых.


Рассматривая чертёж, показанный на рисунке, и

наблюдая изменение стороны a , мы можем

записать следующее соотношение для бесконечно

малых приращений сторон с и a (используя подобие

треугольников):

Используя метод разделения переменных, находим:

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов:

Интегрируя данное уравнение и используя начальные условия, получаем:

Таким образом, мы приходим к желаемому ответу:

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной

пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми

вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения

данном случае катет b ). Тогда для константы интегрирования получим:

Рассмотрение тем школьной программы с помощью видеоуроков является удобным способом изучения и усвоения материала. Видео помогает сконцентрировать внимание учащихся на основных теоретических положениях и не упускать важных деталей. При необходимости школьники всегда могут прослушать видеоурок повторно или вернуться на несколько тем назад.

Данный видеоурок для 8-го класса поможет учащимся изучить новую тему по геометрии.

В предыдущей теме мы изучили теорему Пифагора и разобрали ее доказательство.

Существует также теорема, которая известна как обратная теорема Пифагора. Рассмотрим ее подробнее.

Теорема. Треугольник является прямоугольным, если в нем выполняется равенство: значение одной стороны треугольника, возведенной в квадрат, такое же, как сумма возведенных в квадрат двух других сторон.

Доказательство. Допустим, нам дан треугольник ABC, в котором выполняется равенство AB 2 = CA 2 + CB 2 . Необходимо доказать, что угол С равен 90 градусов. Рассмотрим треугольник A 1 B 1 C 1 , в котором угол С 1 равен 90 градусов, сторона C 1 A 1 равна CA и сторона B 1 C 1 равна BС.

Применяя теорему Пифагора, запишем отношение сторон в треугольнике A 1 C 1 B 1: A 1 B 1 2 = C 1 A 1 2 + C 1 B 1 2 . Произведя замену в выражении на равные стороны, получим A 1 B 1 2 = CA 2 + CB 2 .

Из условий теоремы мы знаем, что AB 2 = CA 2 + CB 2 . Тогда можем записать A 1 B 1 2 = AB 2 , из чего следует, что A 1 B 1 = AB.

Мы нашли, что в треугольниках ABC и A 1 B 1 C 1 равны три стороны: A 1 C 1 = AC, B 1 C 1 = BC, A 1 B 1 = AB. Значит, эти треугольники равны. Из равенства треугольников следует, что угол С равен углу С 1 и соответственно равен 90 градусов. Мы определили, что треугольник ABC прямоугольный и его угол С равен 90 градусов. Мы доказали данную теорему.

Далее автор приводит пример. Допустим, дан произвольный треугольник. Известны размеры его сторон: 5, 4 и 3 единиц. Проверим утверждение из теоремы, обратной теореме Пифагора: 5 2 = 3 2 + 4 2 . Утверждение верно, значит данный треугольник прямоугольный.

В следующих примерах треугольники также будут прямоугольными, если их стороны равны:

5, 12, 13 единиц; равенство 13 2 = 5 2 + 12 2 является верным;

8, 15, 17 единиц; равенство 17 2 = 8 2 + 15 2 является верным;

7, 24, 25 единиц; равенство 25 2 = 7 2 + 24 2 является верным.

Известно понятие пифагорового треугольника. Это прямоугольный треугольник, у которого значения сторон равны целым числам. Если катеты пифагорового треугольника обозначить через a и c, а гипотенузу b, то значения сторон этого треугольника можно записать с помощью следующих формул:

b = k x (m 2 - n 2)

c = k x (m 2 + n 2)

где m, n, k- любые натуральные числа, причем значение m больше значения n.

Интересный факт: треугольник со сторонами 5, 4 и 3 называют также египетским треугольником, такой треугольник был известен еще в Древнем Египте.

В данном видеоуроке мы ознакомились с теоремой, обратной теореме Пифагора. Подробно рассмотрели доказательство. Также учащиеся узнали, какие треугольники называют пифагоровыми.

Учащиеся с легкостью могут ознакомиться с темой «Теорема, обратная теореме Пифагора» самостоятельно с помощью данного видеоурока.

Тема: Теорема, обратная теореме Пифагора.

Цели урока: 1) рассмотреть теорему, обратную теореме Пифагора; ее применение в процессе решения задач; закрепить теорему Пифагора и совершенствовать навыки решения задач на ее применение;

2) развивать логическое мышление, творческий поиск, познавательный интерес;

3) воспитывать у учащихся ответственного отношения к учению, культуры математической речи.

Тип урока. Урок усвоения новых знаний.

Ход урока

І. Организационный момент

ІІ. Актуализация знаний

Урок мне бы хотелось начать с четверостишья.

Да, путь познания не гладок

Но знаем мы со школьных лет,

Загадок больше, чем разгадок,

И поискам предела нет!

Итак, на прошлом уроке вы выучили теорему Пифагора. Вопросы:

Теорема Пифагора справедлива для какой фигуры?

Какой треугольник называют прямоугольным?

Сформулируйте теорему Пифагора.

Как запишется теорема Пифагора для каждого треугольника?

Какие треугольники называются равными?

Сформулируйте признаки равенства треугольников?

А теперь проведем небольшую самостоятельную работу:

Решение задач по чертежам.

1

(1 б.) Найти: АВ.

2

(1 б.) Найти: ВС.

3

( 2 б.) Найти: АС

4

(1 б.) Найти: АС

5 Дано: АВС D ромб

(2 б.) АВ = 13 см

АС = 10 см

Найти: В D

Самопроверка №1. 5

2. 5

3. 16

4. 13

5. 24

ІІІ. Изучение нового материала.

Древние египтяне строили прямые углы на местности таким образом: делили узлами веревку на 12 равных частей, связывали ее концы, после чего веревку растягивали так на земле, чтобы образовался треугольник со сторонами 3, 4 и 5 делений. Угол треугольника, который лежал против стороны с 5 делениями, был прямой.

Можете ли вы объяснить правильность этого суждения?

В результате поиска ответа на вопрос учащиеся должны понять, что с математической точки зрения вопрос ставится: будет ли треугольник прямоугольным.

Ставим проблему: как, не делая измерений, определить, будет ли треугольник с заданными сторонами прямоугольным. Решение этой проблемы и есть цель урока.

Запишите тему урока.

Теорема. Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник прямоугольный.

Самостоятельно доказывают теорему (составляют план доказательства по учебнику).

Из этой теоремы следует, что треугольник со сторонами 3, 4, 5 – прямоугольный (египетский).

Вообще, числа, для которых выполняется равенство , называют пифагоровыми тройками. А треугольники, длины сторон которых выражаются пифагоровыми тройками (6, 8, 10), - пифагоровы треугольники.

Закрепление.

Т.к. , то треугольник со сторонами 12, 13, 5 не является прямоугольным.

Т.к. , то треугольник со сторонами 1, 5, 6 является прямоугольным.

    430 (а, б, в)

( - не является)

Поделиться