Физика – наука экспериментальная

В основе своей физика - экспериментальная наука: все её законы и теории основываются и опираются на опытные данные. Однако зачастую именно новые теории являются причиной проведения экспериментов и, как результат, лежат в основе новых открытий. Поэтому принято различать экспериментальную и теоретическую физику.

Экспериментальная физика исследует явления природы в заранее подготовленных условиях. В её задачи входит обнаружение ранее неизвестных явлений, подтверждение или опровержение физических теорий. Многие достижения в физике были сделаны благодаря экспериментальному обнаружению явлений, не описываемых существующими теориями. Например, экспериментальное изучение фотоэффекта послужило одной из посылок к созданию квантовой механики (хотя рождением квантовой механики считается появление гипотезы Планка, выдвинутой им для разрешения ультрафиолетовой катастрофы - парадокса классической теоретической физики излучения).

В задачи теоретической физики входит формулирование общих законов природы и объяснение на основе этих законов различных явлений, а также предсказание до сих пор неизвестных явлений. Верность любой физической теории проверяется экспериментально: если результаты эксперимента совпадают с предсказаниями теории, она считается адекватной (достаточно точно описывающей данное явление).

При изучении любого явления экспериментальные и теоретические аспекты одинаково важны.

У истоков теоретической физики стоял Исаак Ньютон. Чтобы объяснить, почему планеты движутся по эллипсам с фокусом у Солнца и почему кубы радиусов орбит пропорциональны квадратам периодов обращения, он предположил, что между двумя массами действует сила, пропорциональная их произведению и обратно пропорциональная квадрату расстояния между телами. Ньютон сформулировал основные законы классической механики. Он преодолел огромные по тому времени математические трудности и получил количественное объяснение движения планет, вычислил возмущения движения Луны под влиянием Солнца, построил теорию приливов... Теоретическая физика началась с того, что Ньютон превратил недоказанную идею всемирного тяготения в физическую теорию, подтвержденную опытом.

Великим физиком-теоретиком нашего века был Альберт Эйнштейн. Теорию относительности, открывшую совершенно новое понятие пространства-времени, он создал, пользуясь только бумагой и карандашом. Оказалось, что время течет по-разному в неподвижной системе и в равномерно движущейся. Формулы Эйнштейна были с огромной точностью подтверждены результатами экспериментов последних десятилетий: быстро движущиеся нестабильные частицы, такие, как пи-мезоны или мюоны, распадаются медленнее, чем неподвижные.

Физика - экспериментальная наука. В трудах Галилея, Ньютона и других исследователей утвердился ее основной метод: любое предсказание теории должно быть подтверждено опытом. В XVII, XVIII и XIX вв. одни и те же люди и проводили теоретический анализ, и сами проверяли свои выводы на опыте. Но в XX в. стремительное накопление знаний, развитие техники, все, что носит название научно-технической революции, привели к тому, что одному человеку стало не под силу и создавать теории, и ставить эксперименты.

Произошло разделение физиков на теоретиков и экспериментаторов (см. Теоретическая физика). Конечно, нет правил без исключений, и иногда теоретики ставят опыты, а экспериментаторы занимаются теорией. Но с каждым годом таких исключений становится все меньше.

Сейчас в руках экспериментаторов имеется сложная и мощная техника: ускорители, ядер-ные реакторы, техника сверхвысокого вакуума, глубокого охлаждения и, конечно, электроника. Она совершенно преобразила возможности опыта, и это можно проиллюстрировать на таком примере.

В начале нашего века Э. Резерфорд и его сотрудники регистрировали в своих экспериментах альфа-частицы с помощью экрана из сернистого цинка и микроскопа (см. Ядро атомное). При попадании каждой частицы на экран последний давал слабую вспышку света, которую можно было разглядеть в микроскоп. Перед началом опыта исследователям приходилось часами сидеть в темноте для обострения чувствительности глаз. Максимальное число импульсов, которое удавалось сосчитать, - было два-три в секунду. Через несколько минут глаза уставали.

А сейчас специальные электронные приборы - фотоумножители - в состоянии различить и превратить в электрические импульсы гораздо более слабые световые вспышки. Они успевают сосчитать десятки и сотни тысяч импульсов в секунду. И не только сосчитать. Специальные схемы, используя форму электрического импульса (повторяющего световой), дают информацию об энергии, заряде, даже о типе частицы. Эта информация запоминается и обрабатывается быстродействующими вычислительными машинами.

Следует отметить, что у экспериментальной физики двоякие отношения с техникой. С одной стороны, физика, открывая неизвестные еще области, такие, как электричество, атомная энергия, лазеры, постепенно осваивает их и передает в руки инженеров. С другой стороны, после того как техника создала соответствующие приборы и даже новые отрасли промышленности, экспериментальная физика начинает использовать эти приборы при постановке опытов. И это позволяет ей все глубже проникать в тайны материи.

Современные средства проведения эксперимента требуют участия уже целого коллектива экспериментаторов.

Экспериментальное исследование можно условно разбить на три части: подготовка, измерение, обработка разультатов.

Когда рождается идея опыта, на повестку дня становится возможность его осуществления, создания новой установки или переделки старой. На этой стадии необходимо проявить максимальную предусмотрительность.

«Я всегда придавал очень большое значение тому, как был задуман и поставлен опыт. Конечно, надо исходить из определенной, заранее продуманной идеи; но каждый раз, когда это только возможно, опыт должен оставлять максимальное число открытых окон для того, чтобы можно было наблюдать непредусмотренное явление, - писал выдающийся французский физик Ф. Жолио-Кюри.

При конструировании и изготовлении установки на помощь эскпериментатору приходят специализированные конструкторские бюро, мастерские, иногда и большие заводы. Широко используются готовые приборы и блоки. Тем не менее на долю физиков выпадает самая ответственная работа: создание тех узлов, которые являются уникальными и которые порой никогда и нигде еще не применялись. Поэтому выдающиеся физики-экспериментаторы всегда были и очень хорошими инженерами.

Когда установка собрана, приходит время проведения контрольных экспериментов. Их результаты служат для проверки работоспособности аппаратуры и снятия ее характеристик.

А потом начинаются основные измерения, которые иногда могут продолжаться очень долго. Своеобразный рекорд был поставлен при регистрации солнечных нейтрино - измерения продолжались 15 лет.

Обработка результатов тоже далеко не простое дело. Существуют области экспериментальной физики, в которых на обработке сосредоточен центр тяжести всего опыта, например на обработке снимков, полученных в пузырьковой камере. Камеры установлены на пути пучков крупнейших в мире ускорителей. В них на следе пролетевшей частицы образуется цепочка пузырьков. След становится видным и может быть сфотографирован. Камера "выдает" десятки тысяч фотографий в сутки.

Еще недавно (сейчас и здесь на помощь пришла автоматика) сотни лаборантов сидели у просмотровых столиков за проекционными микроскопами, производя первичный отбор фотографий. Затем в действие вступали автоматизированные установки и ЭВМ. И уже после всего этого исследователи получали нужную информацию, могли строить графики, производить расчеты.

Советским экспериментаторам есть чем гордиться. Перед революцией в России насчитывалось всего несколько десятков серьезно работающих физиков. Большинство из них проводили исследования в неприспособленных помещениях и с самодельными приборами. Поэтому открытия мирового класса, сделанные П. Н. Лебедевым (давление света), А. Г. Столетовым (исследования фотоэффекта), можно назвать настоящим подвигом.

Наша экспериментальная физика была заложена в трудных условиях первых лет Советской власти. Она создавалась усилиями таких ученых, как А. Ф. Иоффе, С. И. Вавилов и ряд других. Они были экспериментаторами, учителями, организаторами науки. Их ученики и ученики их учеников прославили отечественную физику. Излучение Вавилова - Черенкова (см. Вавилова-Черенкова эффект), сверхтекучесть, комбинационное рассеяние света, лазеры - перечисление только крупнейших открытий советских ученых может занять много страниц.

Развитие экспериментальной физики не похоже на гладкую и накатанную дорогу. Трудом многих людей накапливаются наблюдения, производятся опыты и расчеты. Но вот рано или поздно постепенный рост наших знаний претерпевает резкий скачок. Происходит открытие. Многое из того, к чему все так привыкли, представляется совсем в ином свете. И надо дополнять, переделывать, иногда создавать заново теорию, спешно производить новые эксперименты.

Поэтому многие выдающиеся ученые сравнивали путь науки с дорогой в горах. Она идет далеко не по прямой, заставляет путников подниматься по крутым склонам, иногда отступать назад, чтобы в конце концов достигнуть вершины. И тогда с побежденной высоты открываются новые вершины и новые пути.

Этимол. смотри экспериментальный и физика. Опытная физика. Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865 … Словарь иностранных слов русского языка

экспериментальная физика - eksperimentinė fizika statusas T sritis fizika atitikmenys: angl. experimental physics vok. Experimentalphysik, f rus. экспериментальная физика, f pranc. physique expérimentale, f … Fizikos terminų žodynas

ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств … Физическая энциклопедия

Физика кристаллов Кристалл кристаллография Кристаллическая решётка Типы кристаллических решёток Дифракция в кристаллах Обратная решётка Ячейка Вигнера Зейтца Зона Бриллюэна Структурный фактор базиса Атомный фактор рассеяния Типы связей в… … Википедия

Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия

- (ФЭЧ), часто называемая также физикой высоких энергий или субъядерной физикой раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия. Содержание 1 Теоретическая ФЭЧ … Википедия

Результат столкновения ионов золота с энергией 100 ГэВ, зарегистрированный детектором STAR на коллайдере тяжелых релятивистских ионов RHIC. Тысячи линий обозначают пути частиц, родившихся в одном столкновении. Физика элементарных частиц (ФЭЧ),… … Википедия

I. Предмет и структура физики Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… … Большая советская энциклопедия

Физика конденсированного состояния большая ветвь физики, изучающая поведение сложных систем (то есть систем с большим числом степеней свободы) с сильной связью. Принципиальная особенность эволюции таких систем заключается в том, что её (эволюцию … Википедия

Книги

  • , М. Ломоносов. Воспроизведено в оригинальной авторской орфографии издания 1746 года (издательство`Санкт-петербург`). В…
  • Вольфианская экспериментальная физика , М. Ломоносов. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1746 года (издательство "Санкт-петербург"…

Физика – наука экспериментальная. Под экспериментом понимают опыт, т. е. наблюдение исследуемого явления в учитываемых условиях, позволяющих следить за его ходом и воссоздавать каждый раз при повторении тех же условий. Поэтому понимание о и сознание физической теории невозможно без подтвержденных данных, т. е. без эксперимента. Она предполагает активную самостоятельную позицию учащихся в учении; развитие общеучебных умений и навыков: в первую очередь исследовательских и самооценочных; Формирование умений, которые связаны с опытом, их применения в практической деятельности, приоритетное нацеливание на развитие познавательного интереса учащихся, реализацию принципа связи обучения с жизнью.

Для многих учащихся материал по физике, изложенный в книгах и учебниках, остается долгое время непонятным. И интерес к данному предмету из-за непонимания снижается, что ведет к непониманию предмета и снижению успеваемости.

Как пробудить у учащихся тягу к знаниям? Как оживить процесс обучения, как создать атмосферу радостной приподнятости, сопутствующей поиску и творчеству? Как сделать учебную деятельность жизнерадостной, увлекательной и интересной.

Поможет решить эти вопросы при обучении физики постановка ученика в условия исследователя, на место учёного или первооткрывателя

Для учащегося наблюдения и опыты, и организация исследовательской деятельности при изучении физики – необходимый фактор, позволяющий повысить интерес к физической науке, сделать её увлекательной, занимательной и полезной и осознать, что физика – это не страшно, физика – это интересно.

Именно эксперимент помогает ученику не только лучше понять теорию, но и активно включаться в работу на уроке, выдвигать свои теории для решения проблемы, решать не только вместе с учителем поставленные задачи, но и даже самостоятельно. Эксперимент составляет важную сторону практики. С его помощью наука в состоянии не только объяснить явления материального мира, но и непосредственно овладеть ими. Поэтому эксперимент является одним из главных средств связи науки с жизнью.

Эксперимент является одновременно источником знаний, методом обучения и средством активизации познавательной деятельности учащегося.

Он ставится для всего класса. Значительная часть учащихся, особенно мальчиков, имеет рано пробудившийся интерес к технике вообще. Поэтому появление на демонстрационном столе любых технических устройств в виде приборов демонстрационного эксперимента привлекает их внимание.

Для успешной исследовательской деятельности необходимо выработать у учащихся навыки работы своими руками и пробудить интерес к исследовательской работе.

Важно, чтобы учащиеся научились:

Ставить цель;

Составлять план исследований;

Подбирать необходимые приборы и материалы;

Собирать необходимые установки;

Проводить исследования и формулировать выводы

Психологи отмечают, что сложный зрительный материал запоминается лучше, чем его описание. Поэтому демонстрация опытов запечатлевается лучше, чем его рассказ учителя о физическом опыте.

В практике обучения физике в школе сложились три вида экспериментальных занятий:

Физический практикум;

Домашние экспериментальные работы по физике.

Остановимся на домашних экспериментах по физике.

Сегодня в сфере образования набирают силу новые критерии оценки качества образования, учитывающие динамику развития каждого учащегося. Это связано с нарастающей скоростью перемен в обществе: меняются государства, технологии, уклад жизни, появляются новые продукты и потребности, меняются формы работы. Наиболее успешными становятся люди, которые могут за ограниченное время создать уникальный продукт или услугу, перестроится и овладеть новыми методами работы, предложить неординарный выход из проблемной ситуации, то есть реализовать определенные компетенции. Необходимость быстрого поиска решения возникающих производственных и научных задач привела к распространению самостоятельной деятельности как технологии решения проблем. Понятно, что успешных специалистов можно получить, только если формировать их со школьной скамьи. В результате самостоятельная деятельность учащихся необратимо станет одной из важнейших форм современного образования.

При проведении демонстрационного опыта в классе время, отводимое на опыт, ограничивается продолжительностью урока, а на самом деле еще меньше. При этом основную деятельность выполняют учитель и, в лучшем случае, один - два ученика. Остальные только наблюдают за проведением опыта. Часто после урока, на котором проводилась демонстрация, к столу учителя подходит много детей, желающих покрутить ручку генератора, потрогать стакан с водой на ощупь, чтобы определить его температуру и так далее. Это всё показывает то, что многие дети сами хотят ставить опыты, им это интересно! Учителя всегда стараются (конечно, если это хорошие учителя) вести обучение таким образом, чтобы детям было интересно. А тут и искать ничего не надо - дети сами дают подсказку о том, что они не прочь поэкспериментировать сами, посмотреть те явления, о которых рассказывал учитель в теории, на практике.

А что будет, если учитель предложит ученикам выполнить опыт или провести наблюдение вне школы, то есть дома или на улице? Сейчас на передовые исследования нужны огромные средства, которые не всегда имеются даже у некоторых стран. Таким образом, опыты, задаваемые на дом, должны не требовать применения каких-либо приборов и существенных материальных затрат. Может показаться, что научная ценность таких опытов, очень мала. Но разве плохо, если ребенок сам может проверить открытый за много лет до него закон или явление? Опыт - задание творческое, делая что-либо самостоятельно, ученик, хочет он этого или нет, а задумается: как проще провести опыт, где встречался он с подобным явлением на практике, где еще может быть полезно данное явление. Здесь надо заметить то, чтобы дети научились отличать физические опыты от всяческих фокусов, не путать одно с другим.

Что необходимо ребенку, чтобы провести опыт дома? В первую очередь, наверное, это достаточно подробное описание опыта, с указанием необходимых предметов, где в доступной для ребенка форме сказано, что надо делать, на что обратить внимание. В школьных учебниках физики на дом предлагается либо решать задачи, либо отвечать на поставленные в конце параграфа вопросы. Там редко можно встретить описание опыта, который рекомендуется школьникам для самостоятельного проведения дома. Следовательно, если учитель предлагает ученикам проделать что-либо дома, то он обязан дать им подробный инструктаж. Опыт не должен требовать от ученика каких-либо существенных материальных затрат, при проведении опыта должны использоваться предметы и вещества, которые есть практически в каждом доме: посуда, банки, бутылки, вода, соль и так далее. Выполняемый дома школьниками эксперимент должен быть простым по выполнению и оборудованию, но, в то же время, являться ценным в деле изучения и понимания физики в детском возрасте, быть интересным по содержанию.

Главные задачи домашнего эксперимента:

Формирование умения наблюдать физические явления в природе и в быту;

Формирование умения выполнять измерения с помощью измерительных средств, использующихся в быту;

Формирование интереса к эксперименту и к изучению физики;

Формирование самостоятельности и активности.

Домашние лабораторные работы могут быть классифицированы в зависимости от используемого при их выполнении оборудования:

Работы, в которых используются предметы домашнего обихода и подручные материалы (мерный стакан, рулетка, бытовые весы и т. п.);

Работы, в которых используются самодельные приборы (рычажные весы, электроскоп и др.);

Работы, выполняемые на приборах, выпускаемых промышленностью.

Домашний эксперимент можно задавать после прохождения темы в классе. Тогда ученики увидят собственными глазами и убедятся в справедливости изученного теоретически закона или явления. При этом полученные теоретически и проверенные на практике знания достаточно прочно отложатся в их сознании.

А можно и наоборот, задать задание на дом, а после выполнения провести объяснение явления. Таким образом, можно создать у учащихся проблемную ситуацию и перейти к проблемному обучению, которое непроизвольно рождает у учащихся познавательный интерес к изучаемому материалу, обеспечивает познавательную активность учащихся в ходе обучения, ведет к развитию творческого мышления учеников. В таком случае, даже если школьники не смогут объяснить увиденное дома на опыте явление сами, то они будут с интересом слушать рассказ преподавателя.

Примеры домашних экспериментов по физике:

Трение.

1. Возьмите длинную тяжелую книгу, перевяжите ее тонкой ниткой и

прикрепите к нитке резиновую нить длиной 20 см. Положите книгу на стол и очень медленно начинайте тянуть за конец резиновой нити. Попытайтесь измерить длину растянувшейся резиновой нити в момент начала скольжения книги. Измерьте длину растянувшейся книги при равномерном движении книги. Положите под книгу две тонкие цилиндрические ручки (или два цилиндрических карандаша) и так же тяните за конец нити. Измерьте длину растянувшейся нити при равномерном движении книги на катках. Сравните три полученных результата и сделайте выводы. Примечание. Следующее задание является разновидностью предыдущего. Оно так же направлено на сравнение трения покоя, трения скольжения и трения качения.

2.Положите на книгу шестигранный карандаш параллельно ее корешку. Медленно поднимайте верхний край книги до тех пор, пока карандаш не начнет скользить вниз. Чуть уменьшите наклон книги и закрепите ее в таком положении, подложив под нее что-нибудь. Теперь карандаш, если его снова положить на книгу, съезжать не будет. Его удерживает на месте сила трения - сила трения покоя. Но стоит эту силу чуть ослабить - а для этого достаточно щелкнуть пальцем по книге, - и карандаш поползет вниз, пока не упадет на

стол. (Тот же опыт можно проделать, например, с пеналом, спичечным коробком, ластиком и т. п.). Подумайте, почему гвоздь легче вытащить из доски, если вращать его вокруг оси? Чтобы толстую книгу передвинуть по столу одним пальцем, надо приложить некоторое усилие. А если под книгу положить два круглых карандаша или ручки, которые будут в данном случае роликовыми подшипниками, книга легко передвинется от слабого толчка мизинцем. Проделайте опыты и сделайте сравнение силы трения покоя, силы трения скольжения и силы трения качения.

3. На этом опыте можно наблюдать сразу два явления: инерцию, опыты с

которой будут описаны дальше, и трение. Возьмите два яйца: одно сырое, а другое сваренное вкрутую. Закрутите оба яйца на большой тарелке. Вы видите, что вареное яйцо ведет себя иначе, чем сырое: оно вращается значительно быстрее. В вареном яйце белок и желток жестко связаны со своей скорлупой и между собой т. к. находятся в твердом состоянии. А когда мы раскручиваем сырое яйцо, то мы раскручиваем сначала лишь скорлупу, только потом, за счет трения, слой за слоем вращение передается белку и желтку. Таким образом, жидкие белок и желток своим трением между слоями тормозят вращение скорлупы. Примечание. Вместо сырого и вареного яиц можно закрутить две кастрюли,

в одной из которых вода, а в другой находится столько же по объему крупы.

Давление газов. Атмосферное давление.

1. Ополосните пластиковую бутылку горячей водой и плотно закройте крышкой. По мере остывания в ней воздуха до комнатной температуры, давление внутри падает, атмосферное давление сдавливает бутылку с боков. Почему?

2. Модель работы легких. Отрежьте дно у пластиковой бутылки. Натяните на горлышко воздушный шарик и протолкните его внутрь. Отрезанную часть бутылки затяните пленкой от другого воздушного шарика или от использованной резиновой перчатки и закрепите ее скотчем. При оттягивании пленки объем воздуха внутри бутылки увеличивается, давление уменьшается и становится меньше атмосферного, шарик надувается. При надавливании на нижнюю пленку объем воздуха в бутылке уменьшается, давление становится больше атмосферного, шарик сжимается.

3. Надуйте воздушный шарик. О каких свойствах газа и оболочки шарика свидетельствует его форма. Почему, направляя струю воздуха в определенном направлении, мы заставляем шарик раздуваться сразу по всем направлениям? Почему не все воздушные шарики принимают сферическую форму?

4. С помощью трубочки или соломинки и мыльного раствора получите мыльный пузырь. Объясните, почему мыльный пузырь, отделенный от трубочки, имеет шарообразную форму.

5. Сконструируйте картезианский водолаз , пользуясь пластиковой бутылкой или 3-х литровой банкой с пластиковой крышкой. Поплавок изготовьте из обычного прозрачного пузырька, например из-под пенициллина, заполнив его водой более чем на 1/3 объема. В пробке пузырька сделайте шилом отверстие и в него плотно вставьте трубочку длиной 10мм от стержня шариковой ручки. Можно взять пипетку и наполнить её водой так, чтобы она плавала вертикально, практически полностью погрузившись в воду. После наполнения бутылки (банки) водой опустите в нее поплавок. При нажатии на крышку банки или нажиме на бутылку поплавок опускается. Проследите за объемом воды в поплавке при его погружении и подъеме. Поплавок можно изготовить из колпачка от фломастера или от шариковой ручки. Чтобы колпачок плавал вертикально, вставьте в него несколько скрепок. Можно из фольги сделать "пропеллер" и надеть его на колпачок, тогда водолаз будет опускаться и подниматься, вращаясь.

6. Зажженную свечу или бумагу подержите внутри стакана, перевернутого вверх дном. Затем быстро поставьте стакан также вверх дном на поверхность надутого воздушного шарика. Опишите наблюдаемые явления.

Заключение.

Таким образом если учителя будут применять домашние экспериментальные задания в своей работе, то это положительно скажется на процессе обучения школьников физике и на их общем развитии, результатом обучения будет развитие разностороннего, оригинального, не скованного узкими рамками мышления. А - это путь к развитию высокой интеллектуальной активности обучаемых.. Учащиеся смогут не только по-настоящему понять многие процессы, происходящие вокруг него, но главное - применять полученные знания и опыт в своей жизни.

Список литературы.

Избранное. - Челябинск: ЧГПУ, 2000. . Активизация познавательной деятельности учащихся при изучении физики. - Москва: Просвещение, 1983. . Активизация мышления учащихся на уроках физики. - Москва: Просвещение, 1980. Методика преподавания физики в 7-8 классах средней школы . // Под ред. . - Москва: Просвещение, 1990. Ресурсы Интернет.

[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]]

Эксперимента́льная фи́зика - способ познания природы , заключающийся в изучении природных явлений в специально приготовленных условиях. В отличие от теоретической физики , которая исследует математические модели природы,экспериментальная физика призвана исследовать саму природу.

Именно несогласие с результатом эксперимента является критерием ошибочности физической теории , или более точно, неприменимости теории к нашему миру. Обратное утверждение не верно: согласие с экспериментом не может быть доказательством правильности (применимости) теории. То есть главным критерием жизнеспособности физической теории является проверка экспериментом.

Эта очевидная сейчас роль эксперимента была осознана лишь Галилеем и более поздними исследователями, которые делали выводы о свойствах мира на основании наблюдений за поведением предметов в специальных условиях, т. е. ставили эксперименты. Заметим, что это совершенно противоположно, например, подходу древних греков: источником истинного знания об устройстве мира им казалось лишь размышление, а «чувственный опыт» считался подверженным многочисленным обманам и неопределённостям, а потому не мог претендовать на истинное знание.

В идеале, экспериментальная физика должна давать только описание результатов эксперимента, без какой-либо их интерпретации . Однако на практике это недостижимо. Интерпретация результатов более-менее сложного эксперимента неизбежно опирается на то, что у нас есть понимание, как ведут себя все элементы экспериментальной установки. Такое понимание, в свою очередь, не может не опираться на какие-либо теории. Так, эксперименты в ускорительной физике элементарных частиц - одни из самых сложных во всей экспериментальной физике - могут трактоваться как настоящее изучение свойств элементарных частиц лишь после того, как детально поняты (с помощью соответствующих теорий) механические и упругие свойства всех элементов детектора, их отклик на электрические и магнитные поля, свойства остаточных газов в вакуумной камере, распределение электрического поля и дрейф ионов в пропорциональных камерах, процессы ионизации вещества и т. д.1

Напишите отзыв о статье "Экспериментальная физика"

Отрывок, характеризующий Экспериментальная физика

Тогда я ещё ничего не знала ни о клинической смерти, ни о светящихся туннелях, появлявшихся во время неё. Но то, что случилось далее, было очень похожим на все те истории о клинических смертях, которые намного позже мне удалось прочитать в разных книжках, уже живя в далёкой Америке…
Я чувствовала, что если сейчас же не вдохну воздуха, мои лёгкие просто-напросто разорвутся, и я, наверняка, умру. Стало очень страшно, в глазах темнело. Неожиданно в голове вспыхнула яркая вспышка, и все чувства куда-то исчезли... Появился слепяще-яркий, прозрачный голубой туннель, как будто весь сотканный из мельчайших движущихся серебристых звёздочек. Я тихо парила внутри него, не чувствуя ни удушья, ни боли, только мысленно удивляясь необыкновенному чувству абсолютного счастья, как будто наконец-то обрела место своей долгожданной мечты. Было очень спокойно и хорошо. Все звуки исчезли, не хотелось двигаться. Тело стало очень лёгким, почти что невесомым. Вероятнее всего, в тот момент я просто умирала...
Я видела какие-то очень красивые, светящиеся, прозрачные человеческие фигуры, медленно и плавно приближающиеся по туннелю ко мне. Все они тепло улыбались, как будто звали к ним присоединиться… Я уже было потянулась к ним… как вдруг откуда-то появилась огромная светящаяся ладонь, которая подхватила меня снизу и, как песчинку, начала быстро подымать на поверхность. Мозг взорвался от нахлынувших резких звуков, как будто в голове внезапно лопнула защищающая перегородка... Меня, как мячик, вышвырнуло на поверхность… и оглушило настоящим водопадом цветов, звуков и ощущений, которые почему-то воспринимались мной теперь намного ярче, чем это было привычно.
На берегу была настоящая паника… Соседские мальчишки, что-то крича, выразительно размахивали руками, показывая в мою сторону. Кто-то пытался вытащить меня на сушу. А потом всё поплыло, закружилось в каком-то сумасшедшем водовороте, и моё бедное, перенапряжённое сознание уплыло в полную тишину... Когда я понемножку «очухалась», ребята стояли вокруг меня с расширившимися от ужаса глазами, и все вместе чем-то напоминали одинаковых перепуганных совят… Было видно, что всё это время они находились чуть ли не в настоящем паническом шоке, и видимо мысленно уже успели меня «похоронить». Я постаралась изобразить улыбку и, всё ещё давясь тёплой речной водой, с трудом выдавила, что у меня всё в порядке, хотя ни в каком порядке я в тот момент естественно не была.
Поделиться