9 valemit, mis on seotud logaritmide astmete omadustega. Mis on logaritm? Logaritmide lahendamine. Näited. Logaritmide omadused

peamised omadused.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

identsed põhjused

Log6 4 + log6 9.

Teeme nüüd ülesande pisut keerulisemaks.

Logaritmide lahendamise näited

Mis siis, kui logaritmi alus või argument on aste? Seejärel saab selle astme eksponendi logaritmi märgist välja võtta järgmiste reeglite järgi:

Loomulikult on kõik need reeglid mõttekad, kui järgitakse logaritmi ODZ-d: a > 0, a ≠ 1, x >

Ülesanne. Leidke väljendi tähendus:

Üleminek uuele vundamendile

Olgu antud logaritmi logaks. Siis on võrdus tõene mis tahes arvu c puhul, mille puhul c > 0 ja c ≠ 1:

Ülesanne. Leidke väljendi tähendus:

Vaata ka:


Logaritmi põhiomadused

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Eksponent on 2,718281828…. Eksponenti meeldejätmiseks võite uurida reeglit: eksponent on võrdne 2,7 ja kaks korda Leo Nikolajevitš Tolstoi sünniaastaga.

Logaritmide põhiomadused

Seda reeglit teades saate teada nii eksponendi täpset väärtust kui ka Lev Tolstoi sünnikuupäeva.


Logaritmide näited

Logaritmi avaldised

Näide 1.
A). x=10ac^2 (a>0,c>0).

Atribuutide 3.5 abil arvutame

2.

3.

4. Kus .



Näide 2. Leia x, kui


Näide 3. Olgu antud logaritmide väärtus

Arvuta log(x), kui




Logaritmide põhiomadused

Logaritme, nagu kõiki numbreid, saab igati liita, lahutada ja teisendada. Aga kuna logaritmid pole päris tavalised arvud, siis siin kehtivad reeglid, mida kutsutakse peamised omadused.

Neid reegleid pead kindlasti teadma – ilma nendeta ei saa lahendada ühtegi tõsist logaritmiülesannet. Lisaks on neid väga vähe – ühe päevaga saab kõik selgeks. Nii et alustame.

Logaritmide liitmine ja lahutamine

Vaatleme kahte samade alustega logaritmi: logaksi ja logaritmi. Seejärel saab neid liita ja lahutada ning:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Seega on logaritmide summa võrdne korrutise logaritmiga ja erinevus on võrdne jagatise logaritmiga. Märge: võtmehetk Siin - identsed põhjused. Kui põhjused on erinevad, siis need reeglid ei tööta!

Need valemid aitavad teil arvutada logaritmilise avaldise isegi siis, kui selle üksikuid osi ei arvestata (vt õppetundi "Mis on logaritm"). Vaadake näiteid ja vaadake:

Kuna logaritmidel on samad alused, kasutame summa valemit:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Ülesanne. Leidke avaldise väärtus: log2 48 − log2 3.

Alused on samad, kasutame erinevuse valemit:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Ülesanne. Leidke avaldise väärtus: log3 135 − log3 5.

Jällegi on alused samad, seega on meil:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Nagu näete, koosnevad algsed avaldised "halbadest" logaritmidest, mida eraldi ei arvutata. Kuid pärast teisendusi saadakse täiesti normaalsed arvud. Paljud on sellele faktile üles ehitatud proovipaberid. Jah, ühtsel riigieksamil pakutakse testilaadseid väljendeid täie tõsidusega (mõnikord praktiliselt muudatusteta).

Eksponenti väljavõtmine logaritmist

On lihtne näha, et viimane reegel järgib kahte esimest. Kuid parem on seda ikkagi meeles pidada - mõnel juhul vähendab see arvutuste mahtu märkimisväärselt.

Muidugi on kõik need reeglid mõttekad, kui järgitakse logaritmi ODZ-d: a > 0, a ≠ 1, x > 0. Ja veel üks asi: õppige rakendama kõiki valemeid mitte ainult vasakult paremale, vaid ka vastupidi , st. Saate sisestada enne logaritmi märki olevad arvud logaritmi endasse. See on see, mida kõige sagedamini nõutakse.

Ülesanne. Leidke avaldise väärtus: log7 496.

Vabaneme argumendi astmest, kasutades esimest valemit:
log7 496 = 6 log7 49 = 6 2 = 12

Ülesanne. Leidke väljendi tähendus:

Pange tähele, et nimetaja sisaldab logaritmi, mille alus ja argument on täpsed astmed: 16 = 24; 49 = 72. Meil ​​on:

Ma arvan, et viimane näide nõuab veidi selgitust. Kuhu kadusid logaritmid? Kuni viimase hetkeni töötame ainult nimetajaga.

Logaritmi valemid. Logaritmide näited lahendused.

Esitasime seal seisva logaritmi aluse ja argumendi astmetena ning võtsime välja astendajad - saime “kolmekorruselise” murru.

Vaatame nüüd põhifraktsiooni. Lugeja ja nimetaja sisaldavad sama arvu: log2 7. Kuna log2 7 ≠ 0, saame murdosa vähendada - 2/4 jääb nimetajasse. Aritmeetika reeglite järgi saab nelja üle kanda lugejasse, mida ka tehti. Tulemuseks oli vastus: 2.

Üleminek uuele vundamendile

Rääkides logaritmide liitmise ja lahutamise reeglitest, rõhutasin konkreetselt, et need töötavad ainult samade alustega. Mis siis, kui põhjused on erinevad? Mis siis, kui need ei ole sama arvu täpsed astmed?

Appi tulevad uuele sihtasutusele ülemineku valemid. Sõnastame need teoreemi kujul:

Olgu antud logaritmi logaks. Siis on võrdus tõene mis tahes arvu c puhul, mille puhul c > 0 ja c ≠ 1:

Täpsemalt, kui seame c = x, saame:

Teisest valemist järeldub, et logaritmi alust ja argumenti saab vahetada, kuid sel juhul “pööratakse ümber” kogu avaldis, s.t. logaritm ilmub nimetajasse.

Neid valemeid leidub tavalistes arvavaldistes harva. Seda, kui mugavad need on, saab hinnata alles otsustades logaritmilised võrrandid ja ebavõrdsused.

Siiski on probleeme, mida ei saa üldse lahendada peale uude sihtasutusse kolimise. Vaatame paari neist:

Ülesanne. Leidke avaldise väärtus: log5 16 log2 25.

Pange tähele, et mõlema logaritmi argumendid sisaldavad täpseid võimsusi. Võtame välja näitajad: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Nüüd pöörame teist logaritmi ümber:

Kuna tegurite ümberkorraldamisel korrutis ei muutu, korrutasime rahulikult nelja ja kahega ning seejärel tegelesime logaritmidega.

Ülesanne. Leidke avaldise väärtus: log9 100 lg 3.

Esimese logaritmi alus ja argument on täpsed võimsused. Paneme selle kirja ja vabaneme indikaatoritest:

Nüüd vabaneme kümnendlogaritmist, liikudes uuele alusele:

Põhiline logaritmiline identiteet

Sageli on lahendusprotsessis vaja esitada arv logaritmina antud baasile. Sel juhul aitavad meid järgmised valemid:

Esimesel juhul saab arvust n argumendi eksponendiks. Arv n võib olla absoluutselt ükskõik milline, sest see on lihtsalt logaritmi väärtus.

Teine valem on tegelikult parafraseeritud määratlus. Seda nimetatakse nii: .

Tegelikult, mis juhtub, kui arv b tõstetakse sellise astmeni, et sellele astmele vastav arv b annab arvu a? Täpselt nii: tulemuseks on sama arv a. Lugege see lõik uuesti hoolikalt läbi – paljud inimesed jäävad selle peale kinni.

Nagu uude baasi liikumise valemid, on ka põhilogaritmiline identiteet mõnikord ainus võimalik lahendus.

Ülesanne. Leidke väljendi tähendus:

Pange tähele, et log25 64 = log5 8 - lihtsalt võttis ruudu logaritmi baasist ja argumendist. Võttes arvesse sama baasiga võimsuste korrutamise reegleid, saame:

Kui keegi ei tea, siis see oli ühtse riigieksami tõeline ülesanne :)

Logaritmiline ühik ja logaritmiline null

Kokkuvõtteks annan kaks identiteeti, mida vaevalt saab omadusteks nimetada – pigem on need logaritmi definitsiooni tagajärjed. Need esinevad pidevalt probleemides ja tekitavad üllataval kombel probleeme isegi "edasijõudnud" õpilastele.

  1. logaa = 1 on. Pidage üks kord meeles: selle aluse mis tahes aluse a logaritm on võrdne ühega.
  2. loga 1 = 0 on. Alus a võib olla ükskõik milline, kuid kui argument sisaldab ühte, on logaritm võrdne nulliga! Sest a0 = 1 on definitsiooni otsene tagajärg.

See on kõik omadused. Harjutage kindlasti nende rakendamist! Laadige õppetunni alguses petuleht alla, printige see välja ja lahendage probleemid.

Vaata ka:

B-st lähtuv logaritm a-aluseks tähistab avaldist. Logaritmi arvutamine tähendab astme x () leidmist, mille juures võrdsus on täidetud

Logaritmi põhiomadused

Ülaltoodud omadusi on vaja teada, kuna peaaegu kõik logaritmidega seotud ülesanded ja näited lahendatakse nende põhjal. Ülejäänud eksootilised omadused saab tuletada nende valemitega matemaatiliste manipulatsioonide abil

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Logaritmide summa ja erinevuse valemit (3.4) arvutades kohtate üsna sageli. Ülejäänud on mõnevõrra keerulised, kuid paljude ülesannete puhul on need asendamatud keerukate avaldiste lihtsustamiseks ja nende väärtuste arvutamiseks.

Levinud logaritmide juhtumid

Mõned levinumad logaritmid on need, mille alus on isegi kümme, eksponentsiaalne või kaks.
Logaritmi kümne baasini nimetatakse tavaliselt kümnendlogaritmiks ja seda tähistatakse lihtsalt lg(x)-ga.

Salvestusest selgub, et põhitõed pole salvestusel kirjas. Näiteks

Naturaalne logaritm on logaritm, mille aluseks on astendaja (tähistatakse ln(x)-ga).

Eksponent on 2,718281828…. Eksponenti meeldejätmiseks võite uurida reeglit: eksponent on võrdne 2,7 ja kaks korda Leo Nikolajevitš Tolstoi sünniaastaga. Seda reeglit teades saate teada nii eksponendi täpset väärtust kui ka Lev Tolstoi sünnikuupäeva.

Ja veel üks oluline logaritm kahe aluse jaoks on tähistatud

Funktsiooni logaritmi tuletis võrdub ühega, mis on jagatud muutujaga

Integraal- ehk antiderivatiivne logaritm määratakse seosega

Antud materjalist piisab paljude logaritmide ja logaritmidega seotud ülesannete lahendamiseks. Materjali mõistmiseks toon vaid mõned levinud näited kooli õppekava ja ülikoolid.

Logaritmide näited

Logaritmi avaldised

Näide 1.
A). x=10ac^2 (a>0,c>0).

Atribuutide 3.5 abil arvutame

2.
Logaritmide erinevuse omaduse järgi saame

3.
Kasutades omadusi 3.5 leiame

4. Kus .

Näiliselt keerukat väljendit on lihtsustatud mitme reegli abil

Logaritmi väärtuste leidmine

Näide 2. Leia x, kui

Lahendus. Arvutamiseks rakendame viimase liikme 5 ja 13 omadusi

Paneme selle protokolli ja leinama

Kuna alused on võrdsed, võrdsustame avaldised

Logaritmid. Esimene tase.

Olgu logaritmide väärtus antud

Arvuta log(x), kui

Lahendus: võtame muutuja logaritmi, et kirjutada logaritm läbi selle liikmete summa


See on alles meie tutvumise algus logaritmide ja nende omadustega. Harjutage arvutusi, rikastage oma praktilisi oskusi – peagi vajate saadud teadmisi logaritmiliste võrrandite lahendamiseks. Olles tutvunud selliste võrrandite lahendamise põhimeetoditega, laiendame teie teadmisi teisele sama olulisele teemale - logaritmilised võrratused...

Logaritmide põhiomadused

Logaritme, nagu kõiki numbreid, saab igati liita, lahutada ja teisendada. Aga kuna logaritmid pole päris tavalised arvud, siis siin kehtivad reeglid, mida kutsutakse peamised omadused.

Neid reegleid pead kindlasti teadma – ilma nendeta ei saa lahendada ühtegi tõsist logaritmiülesannet. Lisaks on neid väga vähe – ühe päevaga saab kõik selgeks. Nii et alustame.

Logaritmide liitmine ja lahutamine

Vaatleme kahte samade alustega logaritmi: logaksi ja logaritmi. Seejärel saab neid liita ja lahutada ning:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Seega on logaritmide summa võrdne korrutise logaritmiga ja erinevus on võrdne jagatise logaritmiga. Pange tähele: võtmepunkt on siin identsed põhjused. Kui põhjused on erinevad, siis need reeglid ei tööta!

Need valemid aitavad teil arvutada logaritmilise avaldise isegi siis, kui selle üksikuid osi ei arvestata (vt õppetundi "Mis on logaritm"). Vaadake näiteid ja vaadake:

Ülesanne. Leidke avaldise väärtus: log6 4 + log6 9.

Kuna logaritmidel on samad alused, kasutame summa valemit:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Ülesanne. Leidke avaldise väärtus: log2 48 − log2 3.

Alused on samad, kasutame erinevuse valemit:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Ülesanne. Leidke avaldise väärtus: log3 135 − log3 5.

Jällegi on alused samad, seega on meil:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Nagu näete, koosnevad algsed avaldised "halbadest" logaritmidest, mida eraldi ei arvutata. Kuid pärast teisendusi saadakse täiesti normaalsed arvud. Paljud testid põhinevad sellel faktil. Jah, ühtsel riigieksamil pakutakse testilaadseid väljendeid täie tõsidusega (mõnikord praktiliselt muudatusteta).

Eksponenti väljavõtmine logaritmist

Teeme nüüd ülesande pisut keerulisemaks. Mis siis, kui logaritmi alus või argument on aste? Seejärel saab selle astme eksponendi logaritmi märgist välja võtta järgmiste reeglite järgi:

On lihtne näha, et viimane reegel järgib kahte esimest. Kuid parem on seda ikkagi meeles pidada - mõnel juhul vähendab see arvutuste mahtu märkimisväärselt.

Muidugi on kõik need reeglid mõttekad, kui järgitakse logaritmi ODZ-d: a > 0, a ≠ 1, x > 0. Ja veel üks asi: õppige rakendama kõiki valemeid mitte ainult vasakult paremale, vaid ka vastupidi , st. Saate sisestada enne logaritmi märki olevad arvud logaritmi endasse.

Kuidas lahendada logaritme

See on see, mida kõige sagedamini nõutakse.

Ülesanne. Leidke avaldise väärtus: log7 496.

Vabaneme argumendi astmest, kasutades esimest valemit:
log7 496 = 6 log7 49 = 6 2 = 12

Ülesanne. Leidke väljendi tähendus:

Pange tähele, et nimetaja sisaldab logaritmi, mille alus ja argument on täpsed astmed: 16 = 24; 49 = 72. Meil ​​on:

Ma arvan, et viimane näide nõuab veidi selgitust. Kuhu kadusid logaritmid? Kuni viimase hetkeni töötame ainult nimetajaga. Esitasime seal seisva logaritmi aluse ja argumendi astmetena ning võtsime välja astendajad - saime “kolmekorruselise” murru.

Vaatame nüüd põhifraktsiooni. Lugeja ja nimetaja sisaldavad sama arvu: log2 7. Kuna log2 7 ≠ 0, saame murdosa vähendada - 2/4 jääb nimetajasse. Aritmeetika reeglite järgi saab nelja üle kanda lugejasse, mida ka tehti. Tulemuseks oli vastus: 2.

Üleminek uuele vundamendile

Rääkides logaritmide liitmise ja lahutamise reeglitest, rõhutasin konkreetselt, et need töötavad ainult samade alustega. Mis siis, kui põhjused on erinevad? Mis siis, kui need ei ole sama arvu täpsed astmed?

Appi tulevad uuele sihtasutusele ülemineku valemid. Sõnastame need teoreemi kujul:

Olgu antud logaritmi logaks. Siis on võrdus tõene mis tahes arvu c puhul, mille puhul c > 0 ja c ≠ 1:

Täpsemalt, kui seame c = x, saame:

Teisest valemist järeldub, et logaritmi alust ja argumenti saab vahetada, kuid sel juhul “pööratakse ümber” kogu avaldis, s.t. logaritm ilmub nimetajasse.

Neid valemeid leidub tavalistes arvavaldistes harva. Seda, kui mugavad need on, saab hinnata ainult logaritmiliste võrrandite ja võrratuste lahendamisel.

Siiski on probleeme, mida ei saa üldse lahendada peale uude sihtasutusse kolimise. Vaatame paari neist:

Ülesanne. Leidke avaldise väärtus: log5 16 log2 25.

Pange tähele, et mõlema logaritmi argumendid sisaldavad täpseid võimsusi. Võtame välja näitajad: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Nüüd pöörame teist logaritmi ümber:

Kuna tegurite ümberkorraldamisel korrutis ei muutu, korrutasime rahulikult nelja ja kahega ning seejärel tegelesime logaritmidega.

Ülesanne. Leidke avaldise väärtus: log9 100 lg 3.

Esimese logaritmi alus ja argument on täpsed võimsused. Paneme selle kirja ja vabaneme indikaatoritest:

Nüüd vabaneme kümnendlogaritmist, liikudes uuele alusele:

Põhiline logaritmiline identiteet

Sageli on lahendusprotsessis vaja esitada arv logaritmina antud baasile. Sel juhul aitavad meid järgmised valemid:

Esimesel juhul saab arvust n argumendi eksponendiks. Arv n võib olla absoluutselt ükskõik milline, sest see on lihtsalt logaritmi väärtus.

Teine valem on tegelikult parafraseeritud määratlus. Seda nimetatakse nii: .

Tegelikult, mis juhtub, kui arv b tõstetakse sellise astmeni, et sellele astmele vastav arv b annab arvu a? Täpselt nii: tulemuseks on sama arv a. Lugege see lõik uuesti hoolikalt läbi – paljud inimesed jäävad selle peale kinni.

Nagu uude baasi liikumise valemid, on ka põhilogaritmiline identiteet mõnikord ainus võimalik lahendus.

Ülesanne. Leidke väljendi tähendus:

Pange tähele, et log25 64 = log5 8 - lihtsalt võttis ruudu logaritmi baasist ja argumendist. Võttes arvesse sama baasiga võimsuste korrutamise reegleid, saame:

Kui keegi ei tea, siis see oli ühtse riigieksami tõeline ülesanne :)

Logaritmiline ühik ja logaritmiline null

Kokkuvõtteks annan kaks identiteeti, mida vaevalt saab omadusteks nimetada – pigem on need logaritmi definitsiooni tagajärjed. Need esinevad pidevalt probleemides ja tekitavad üllataval kombel probleeme isegi "edasijõudnud" õpilastele.

  1. logaa = 1 on. Pidage üks kord meeles: selle aluse mis tahes aluse a logaritm on võrdne ühega.
  2. loga 1 = 0 on. Alus a võib olla ükskõik milline, kuid kui argument sisaldab ühte, on logaritm võrdne nulliga! Sest a0 = 1 on definitsiooni otsene tagajärg.

See on kõik omadused. Harjutage kindlasti nende rakendamist! Laadige õppetunni alguses petuleht alla, printige see välja ja lahendage probleemid.

Arvu logaritm N põhineb A nimetatakse eksponendiks X , millele peate ehitama A numbri saamiseks N

Tingimusel, et
,
,

Logaritmi definitsioonist järeldub, et
, st.
- see võrdsus on logaritmiline põhiidentiteet.

Logaritme 10-ni nimetatakse kümnendlogaritmideks. Selle asemel
kirjutada
.

Logaritmid baasi e nimetatakse looduslikeks ja on määratud
.

Logaritmide põhiomadused.

    Ühe logaritm võrdub mis tahes aluse puhul nulliga.

    Toote logaritm võrdne summaga tegurite logaritmid.

3) Jagatise logaritm on võrdne logaritmide vahega


Faktor
nimetatakse üleminekumooduliks logaritmidelt baasile a logaritmidele baasis b .

Kasutades atribuute 2-5, on sageli võimalik taandada kompleksavaldise logaritm logaritmide lihtsate aritmeetiliste toimingute tulemuseks.

Näiteks,

Selliseid logaritmi teisendusi nimetatakse logaritmideks. Logaritmidele vastupidiseid teisendusi nimetatakse potentseerimiseks.

Peatükk 2. Kõrgema matemaatika elemendid.

1. Piirangud

Funktsiooni piirang
on lõplik arv A, kui, as xx 0 iga etteantud jaoks
, on selline number
et niipea kui
, See
.

Funktsioon, millel on piirang, erineb sellest lõpmata väikese summa võrra:
, kus- b.m.v., st.
.

Näide. Mõelge funktsioonile
.

Kui pingutada
, funktsioon y kipub nulli:

1.1. Põhiteoreemid piiride kohta.

    Konstantse väärtuse piir on võrdne selle konstantse väärtusega

.

    Lõpliku arvu funktsioonide summa (erinevuse) piir on võrdne nende funktsioonide piiride summaga (erinevus).

    Lõpliku arvu funktsioonide korrutise piirväärtus on võrdne nende funktsioonide piiride korrutisega.

    Kahe funktsiooni jagatise piir on võrdne nende funktsioonide piiride jagatisega, kui nimetaja piir ei ole null.

Imelised piirid

,
, Kus

1.2. Limiidi arvutamise näited

Kõiki limiite aga nii lihtsalt ei arvutata. Enamasti taandub limiidi arvutamine tüübi määramatuse paljastamisele: või .

.

2. Funktsiooni tuletis

Olgu meil funktsioon
, pidev segmendil
.

Argument sai veidi tõusu
. Seejärel saab funktsioon juurdekasvu
.

Argumendi väärtus vastab funktsiooni väärtusele
.

Argumendi väärtus
vastab funktsiooni väärtusele.

Seega,.

Leiame selle suhte piiri
. Kui see piir on olemas, siis nimetatakse seda antud funktsiooni tuletiseks.

Definitsioon 3 Antud funktsiooni tuletis
argumendiga nimetatakse funktsiooni juurdekasvu ja argumendi juurdekasvu suhte piiriks, kui argumendi juurdekasv kipub meelevaldselt nulli.

Funktsiooni tuletis
saab tähistada järgmiselt:

; ; ; .

Definitsioon 4 Funktsiooni tuletise leidmise operatsiooni nimetatakse eristamist.

2.1. Tuletise mehaaniline tähendus.

Vaatleme mõne jäiga keha või materiaalse punkti sirgjoonelist liikumist.

Lase mingil ajahetkel liikuv punkt
oli eemal algasendist
.

Mõne aja pärast
ta liikus eemale
. Suhtumine =- materiaalse punkti keskmine kiirus
. Leiame selle suhte piiri, võttes seda arvesse
.

Järelikult taandatakse materiaalse punkti hetkelise liikumiskiiruse määramine tee tuletise leidmisele aja suhtes.

2.2. Tuletise geomeetriline väärtus

Olgu meil graafiliselt määratletud funktsioon
.

Riis. 1. Tuletise geomeetriline tähendus

Kui
, siis punkt
, liigub piki kõverat, lähenedes punktile
.

Seega
, st. tuletise väärtus argumendi antud väärtuse jaoks arvuliselt võrdne selle nurga puutujaga, mille puutuja moodustab antud punktis telje positiivse suunaga
.

2.3. Põhiliste diferentseerimisvalemite tabel.

Toitefunktsioon

Eksponentfunktsioon

Logaritmiline funktsioon

Trigonomeetriline funktsioon

Trigonomeetriline pöördfunktsioon

2.4. Eristamise reeglid.

Tuletis

Funktsioonide summa (erinevuse) tuletis


Kahe funktsiooni korrutise tuletis


Kahe funktsiooni jagatise tuletis


2.5. Kompleksfunktsiooni tuletis.

Olgu funktsioon antud
nii, et seda saab esitada kujul

Ja
, kus muutuja on siis vahepealne argument

Kompleksfunktsiooni tuletis on võrdne antud funktsiooni tuletise korrutisega vaheargumendi ja vaheargumendi tuletisega x suhtes.

Näide 1.

Näide 2.

3. Diferentsiaalfunktsioon.

Las olla
, mõnel intervallil diferentseeruv
lase sel minna juures sellel funktsioonil on tuletis

,

siis saame kirjutada

(1),

Kus - lõpmatult väike kogus,

mis ajast

Kõigi võrdsuse (1) tingimuste korrutamine
meil on:

Kus
- b.m.v. kõrgem järjekord.

Suurusjärk
nimetatakse funktsiooni diferentsiaaliks
ja on määratud

.

3.1. Diferentsiaali geomeetriline väärtus.

Olgu funktsioon antud
.

Joonis 2. Diferentsiaali geomeetriline tähendus.

.

Ilmselgelt funktsiooni erinevus
on võrdne puutuja ordinaadi juurdekasvuga antud punktis.

3.2. Erinevat järku tuletis- ja diferentsiaalid.

Kui seal
, Siis
nimetatakse esimeseks tuletiseks.

Esimese tuletise tuletist nimetatakse teist järku tuletiseks ja kirjutatakse
.

Funktsiooni n-ndat järku tuletis
nimetatakse (n-1)-ndat järku tuletiseks ja kirjutatakse:

.

Funktsiooni diferentsiaali diferentsiaali nimetatakse teist diferentsiaaliks või teist järku diferentsiaaliks.

.

.

3.3 Bioloogiliste probleemide lahendamine diferentseerimise abil.

Ülesanne 1. Uuringud on näidanud, et mikroorganismide koloonia kasv järgib seadusi
, Kus N – mikroorganismide arv (tuhandetes), t – aeg (päevad).

b) Kas koloonia populatsioon sel perioodil suureneb või väheneb?

Vastus. Koloonia suurus suureneb.

Ülesanne 2. Järve vett kontrollitakse perioodiliselt, et jälgida patogeensete bakterite sisaldust. Läbi t päeva pärast testimist määratakse bakterite kontsentratsioon suhtega

.

Millal on järves minimaalne bakterite kontsentratsioon ja kas seal saab ujuda?

Lahendus: Funktsioon saavutab max või min, kui selle tuletis on null.

,

Teeme kindlaks, et maksimum või miinimum on 6 päeva pärast. Selleks võtame teise tuletise.


Vastus: 6 päeva pärast on bakterite minimaalne kontsentratsioon.


Selle artikli keskmes on logaritm. Siin anname logaritmi määratluse, näitame aktsepteeritud määramine, toome näiteid logaritmidest ning räägime naturaal- ja kümnendlogaritmidest. Pärast seda käsitleme põhilogaritmilist identiteeti.

Leheküljel navigeerimine.

Logaritmi definitsioon

Logaritmi mõiste tekib ülesande lahendamisel teatud pöördtähenduses, kui on vaja leida eksponent teadaolev väärtus aste ja teadaolev alus.

Kuid piisavalt eessõna, on aeg vastata küsimusele "mis on logaritm"? Anname vastava määratluse.

Definitsioon.

Logaritm b alusesse a, kus a>0, a≠1 ja b>0 on eksponent, milleni peate arvu a suurendama, et saada b tulemuseks.

Selles etapis märgime, et väljaöeldud sõna "logaritm" peaks kohe tekitama kaks järelküsimust: "milline arv" ja "mille alusel". Teisisõnu, logaritmi lihtsalt pole, vaid on ainult arvu logaritm mingi aluse suhtes.

Lähme kohe sisse logaritmi tähistus: arvu b logaritmi alusele a tähistatakse tavaliselt kui log a b. Arvu b logaritmil aluse e ja 10 logaritmil on vastavalt oma eritähised lnb ja logb, see tähendab, et nad ei kirjuta mitte log e b, vaid lnb ja mitte log 10 b, vaid lgb.

Nüüd saame anda: .
Ja plaadid ei ole mõtet, kuna esimeses neist on negatiivne arv logaritmi märgi all, teises on negatiivne arv aluses ja kolmandas on negatiivne arv logaritmi märgi all ja ühik baas.

Nüüd räägime sellest logaritmide lugemise reeglid. Log a b loetakse "logaritmiks b aluse a kohta". Näiteks logaritm 2 3 on logaritm kolmest aluse 2 suhtes ja kahe punkti kahe kolmandiku logaritm aluse 2 suhtes Ruutjuur viiest. Nimetatakse logaritm aluse e juurde naturaallogaritm, ja märge lnb on "b loomulik logaritm". Näiteks ln7 on seitsme naturaalne logaritm ja me loeme seda pi naturaallogaritmiks. 10 baaslogaritmil on ka spetsiaalne nimi - kümnendlogaritm, ja lgb loetakse "b kümnendlogaritmiks". Näiteks lg1 on ühe kümnendlogaritm ja lg2.75 on kahe koma seitsme viie sajandiku kümnendlogaritm.

Eraldi tasub peatuda tingimustel a>0, a≠1 ja b>0, mille puhul on antud logaritmi definitsioon. Selgitame, kust need piirangud tulevad. Seda aitab meil teha võrdsus nimega , mis tuleneb otseselt ülaltoodud logaritmi definitsioonist.

Alustame a≠1-ga. Kuna üks mis tahes astmega on võrdne ühega, saab võrdus olla tõene ainult siis, kui b=1, kuid log 1 1 võib olla mis tahes reaalarv. Selle ebaselguse vältimiseks eeldatakse, et a≠1.

Põhjendagem tingimuse a>0 otstarbekust. Kui a=0, siis logaritmi definitsiooni järgi oleks meil võrdsus, mis on võimalik ainult siis, kui b=0. Kuid siis võib log 0 0 olla mis tahes nullist erinev reaalarv, kuna nullist mis tahes nullist erineva astmeni on null. Tingimus a≠0 võimaldab meil seda ebaselgust vältida. Ja kui a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Lõpuks tuleneb ebavõrdsusest a>0 tingimus b>0, kuna , ja positiivse alusega a astme väärtus on alati positiivne.

Selle punkti lõpetuseks oletame, et esitatud logaritmi definitsioon võimaldab teil kohe näidata logaritmi väärtust, kui logaritmi märgi all olev arv on aluse teatud võimsus. Tõepoolest, logaritmi definitsioon võimaldab väita, et kui b=a p, siis arvu b logaritm aluse a suhtes on võrdne p-ga. See tähendab, et võrduslogi a a p =p on tõene. Näiteks teame, et 2 3 = 8, siis log 2 8 = 3. Sellest räägime artiklis lähemalt.

Teie privaatsuse säilitamine on meie jaoks oluline. Sel põhjusel oleme välja töötanud privaatsuspoliitika, mis kirjeldab, kuidas me teie teavet kasutame ja säilitame. Vaadake üle meie privaatsustavad ja andke meile teada, kui teil on küsimusi.

Isikuandmete kogumine ja kasutamine

Isikuandmed viitavad andmetele, mida saab kasutada konkreetse isiku tuvastamiseks või temaga ühenduse võtmiseks.

Teil võidakse paluda esitada oma isikuandmed igal ajal, kui võtate meiega ühendust.

Allpool on mõned näited, millist tüüpi isikuandmeid võime koguda ja kuidas me sellist teavet kasutada.

Milliseid isikuandmeid me kogume:

  • Kui esitate saidil avalduse, võime koguda erinevat teavet, sealhulgas teie nime, telefoninumbrit, aadressi Meil jne.

Kuidas me teie isikuandmeid kasutame:

  • Meie poolt kogutud isiklik informatsioon võimaldab meil teiega ühendust võtta ja teid teavitada ainulaadsed pakkumised, tutvustusi ja muid üritusi ning eelseisvaid sündmusi.
  • Aeg-ajalt võime kasutada teie isikuandmeid oluliste teadete ja teadete saatmiseks.
  • Võime kasutada isikuandmeid ka sisemistel eesmärkidel, näiteks auditite, andmeanalüüsi ja erinevate uuringute läbiviimiseks, et täiustada pakutavaid teenuseid ja anda teile soovitusi meie teenuste kohta.
  • Kui osalete auhinnaloosis, -võistlusel või sarnases kampaanias, võime kasutada teie esitatud teavet selliste programmide haldamiseks.

Teabe avaldamine kolmandatele isikutele

Me ei avalda teilt saadud teavet kolmandatele isikutele.

Erandid:

  • Vajadusel vastavalt seadusele, kohtumenetlus, V kohtuprotsess ja/või avalike taotluste või taotluste alusel valitsusagentuurid Vene Föderatsiooni territooriumil - avaldage oma isikuandmed. Võime teie kohta teavet avaldada ka juhul, kui leiame, et selline avaldamine on vajalik või asjakohane turvalisuse, õiguskaitse või muudel avalikel eesmärkidel.
  • Ümberkorraldamise, ühinemise või müügi korral võime kogutud isikuandmed edastada kohaldatavale õigusjärglasele kolmandale osapoolele.

Isikuandmete kaitse

Me rakendame ettevaatusabinõusid – sealhulgas halduslikke, tehnilisi ja füüsilisi –, et kaitsta teie isikuandmeid kaotsimineku, varguse ja väärkasutuse, samuti volitamata juurdepääsu, avalikustamise, muutmise ja hävitamise eest.

Teie privaatsuse austamine ettevõtte tasandil

Teie isikuandmete turvalisuse tagamiseks edastame oma töötajatele privaatsus- ja turvastandardid ning rakendame rangelt privaatsustavasid.

Seoses sellega

saab seada ülesande leida mis tahes kolmest arvust ülejäänud kahe antud arvu hulgast. Kui on antud a ja seejärel N, leitakse need eksponentsimise teel. Kui N ja seejärel a on antud astme x juure (või astmeni tõstmise) abil. Vaatleme nüüd juhtumit, kus a ja N korral peame leidma x.

Olgu arv N positiivne: arv a positiivne ja mitte võrdne ühega: .

Definitsioon. Arvu N logaritm alusele a on astendaja, milleni arvu N saamiseks tuleb a tõsta; logaritmi tähistatakse

Seega võrdsuses (26.1) leitakse astendaja N aluse a logaritmina. Postitused

omavad sama tähendust. Võrdsust (26.1) nimetatakse mõnikord logaritmiteooria põhiidentiteediks; tegelikkuses väljendab see logaritmi mõiste definitsiooni. Kõrval see määratlus Logaritmi a alus on alati positiivne ja erineb ühtsusest; logaritmiline arv N on positiivne. Negatiivsetel arvudel ja nullil pole logaritme. Võib tõestada, et igal arvul antud baasiga on täpselt määratletud logaritm. Seetõttu tähendab võrdsus. Pange tähele, et tingimus on siin oluline; vastasel juhul ei oleks järeldus õigustatud, kuna võrdsus kehtib kõigi x ja y väärtuste puhul.

Näide 1. Leia

Lahendus. Numbri saamiseks peate tõstma baasi 2 astmeni Seetõttu.

Selliste näidete lahendamisel saate teha märkmeid järgmisel kujul:

Näide 2. Otsi .

Lahendus. Meil on

Näidetes 1 ja 2 leidsime hõlpsasti soovitud logaritmi, esitades logaritmi arvu aluse astmena ratsionaalse astendajaga. Üldjuhul, näiteks jne jaoks, seda teha ei saa, kuna logaritmil on irratsionaalne väärtus. Pöörame tähelepanu ühele selle väitega seotud probleemile. Lõikes 12 andsime kontseptsiooni võimalusest määrata antud positiivse arvu mis tahes tegelik võimsus. See oli vajalik logaritmide kasutuselevõtuks, mis üldiselt võivad olla irratsionaalsed arvud.

Vaatame logaritmide mõningaid omadusi.

Omadus 1. Kui arv ja alus on võrdsed, siis on logaritm võrdne ühega ja vastupidi, kui logaritm on võrdne ühega, on arv ja alus võrdsed.

Tõestus. Olgu Logaritmi definitsiooni järgi on meil olemas ja kust

Ja vastupidi, olgu Siis definitsiooni järgi

Omadus 2. Ühe ja mis tahes baasi logaritm on võrdne nulliga.

Tõestus. Logaritmi definitsiooni järgi (mis tahes positiivse aluse nullvõimsus võrdub ühega, vt (10.1)). Siit

Q.E.D.

Tõene on ka vastupidine väide: kui , siis N = 1. Tõepoolest, meil on .

Enne logaritmide järgmise omaduse sõnastamist leppigem kokku väites, et kaks arvu a ja b asuvad kolmanda arvu c samal küljel, kui mõlemad on suuremad kui c või väiksemad kui c. Kui üks neist arvudest on suurem kui c ja teine ​​väiksem kui c, siis me ütleme, et need on koos erinevad küljed külast

Omadus 3. Kui arv ja alus asuvad ühega samal küljel, siis on logaritm positiivne; Kui arv ja alus asuvad ühe vastaskülgedel, on logaritm negatiivne.

Omaduse 3 tõestus põhineb asjaolul, et a võimsus on suurem kui üks, kui alus on suurem kui üks ja astendaja on positiivne või alus on väiksem kui üks ja astendaja on negatiivne. Positsioon on väiksem kui üks, kui alus on suurem kui üks ja astendaja on negatiivne või alus on väiksem kui üks ja astendaja on positiivne.

Kaaluda tuleb nelja juhtumit:

Piirdume neist esimese analüüsiga, ülejäänu kaalub lugeja omaette.

Olgu siis võrdsuses astendaja ei saa olla negatiivne ega võrdne nulliga, järelikult on see positiivne, s.t nagu seda on vaja tõestada.

Näide 3. Uurige, millised allolevatest logaritmidest on positiivsed ja millised negatiivsed:

Lahendus, a) kuna arv 15 ja alus 12 asuvad ühe ühel küljel;

b) kuna 1000 ja 2 asuvad seadme ühel küljel; sel juhul ei ole oluline, et alus oleks logaritmilisest arvust suurem;

c) kuna 3,1 ja 0,8 asuvad ühtsuse vastaskülgedel;

G) ; Miks?

d) ; Miks?

Järgmisi omadusi 4-6 nimetatakse sageli logaritmeerimisreegliteks: need võimaldavad mõne arvu logaritme teades leida nende igaühe korrutise, jagatise ja astme logaritme.

Atribuut 4 (toote logaritmi reegel). Mitme positiivse arvu korrutise logaritm antud baasile on võrdne nende arvude sama aluse logaritmide summaga.

Tõestus. Olgu antud arvud positiivsed.

Nende korrutise logaritmi jaoks kirjutame võrdsuse (26.1), mis määrab logaritmi:

Siit leiame

Võrreldes esimese ja viimase avaldise eksponente, saame vajaliku võrdsuse:

Pange tähele, et tingimus on hädavajalik; kahe negatiivse arvu korrutise logaritm on mõttekas, kuid sel juhul saame

Üldiselt, kui mitme teguri korrutis on positiivne, on selle logaritm võrdne nende tegurite absoluutväärtuste logaritmide summaga.

Omadus 5 (jagatiste logaritmide võtmise reegel). Positiivsete arvude jagatise logaritm võrdub dividendi ja jagaja logaritmide vahega, võttes samasse baasi. Tõestus. Leiame järjekindlalt

Q.E.D.

Omadus 6 (astme logaritmi reegel). Mis tahes positiivse arvu astme logaritm võrdub selle arvu logaritmiga, mis on korrutatud eksponendiga.

Tõestus. Kirjutame uuesti numbri põhiidentiteedi (26.1):

Q.E.D.

Tagajärg. Positiivse arvu juure logaritm võrdub radikaali logaritmiga, mis on jagatud juure eksponendiga:

Selle järelduse paikapidavust saab tõestada, kujutades ette, kuidas ja kuidas omadust 6 kasutada.

Näide 4. Võtke logaritm aluseks a:

a) (eeldatakse, et kõik väärtused b, c, d, e on positiivsed);

b) (eeldatakse, et ).

Lahendus a) Selles avaldises on mugav minna murdarvude juurde:

Võrdluste (26.5)-(26.7) põhjal saame nüüd kirjutada:

Märkame, et arvude logaritmidega tehakse lihtsamaid tehteid kui arvude endaga: arvude korrutamisel liidetakse nende logaritmid, jagamisel lahutatakse jne.

Seetõttu kasutatakse arvutuspraktikas logaritme (vt punkt 29).

Logaritmi pöördtegevust nimetatakse potentseerimiseks, nimelt: potentseerimine on tegevus, mille abil leitakse arv ise arvu antud logaritmist. Põhimõtteliselt pole potentseerimine mingi eriline tegevus: see taandub baasi tõstmisele astmeni (võrdne arvu logaritmiga). Mõistet "potentseerimine" võib pidada termini "astendamine" sünonüümiks.

Potentsieerimisel tuleb kasutada logaritmisreeglitele vastupidiseid reegleid: asendada logaritmide summa korrutise logaritmiga, logaritmide erinevus jagatise logaritmiga jne. Eelkõige juhul, kui ees on tegur logaritmi märgist, siis potentseerimisel tuleb see üle kanda logaritmi märgi all olevatele eksponendikraadidele.

Näide 5. Leidke N, kui on teada, et

Lahendus. Seoses äsja öeldud potentseerimisreegliga kanname selle võrrandi paremal küljel olevate logaritmide märkide ees seisvad tegurid 2/3 ja 1/3 nende logaritmide märkide all olevateks eksponentideks; saame

Nüüd asendame logaritmide erinevuse jagatise logaritmiga:

selle võrduste ahela viimase murru saamiseks vabastasime nimetaja irratsionaalsusest eelmise murru (klausel 25).

Omadus 7. Kui alus on suurem kui üks, siis suurem arv on suurema logaritmiga (ja väiksemal arvul on väiksem), kui alus on väiksem kui üks, siis suuremal arvul on väiksem logaritm (ja väiksemal arvul on suurem).

See omadus on sõnastatud ka reeglina ebavõrdsete logaritmide võtmiseks, mille mõlemad pooled on positiivsed:

Võrratuste logaritmide viimisel ühest suuremale alusele säilib ebavõrdsuse märk ja ühe võrra väiksema baasi logaritmimisel muutub ebavõrdsuse märk vastupidiseks (vt ka lõik 80).

Tõestus põhineb omadustel 5 ja 3. Vaatleme juhtumit, kui If , siis ja logaritme kasutades saame

(a ja N/M asuvad ühtsuse samal küljel). Siit

Järgneb juhtum a, lugeja mõtleb selle ise välja.

Jaga