Reducing quadratic equations. Algorithm for solving quadratic equations using root formulas. Quadratic equations. briefly about the main thing

First level

Quadratic equations. Comprehensive guide (2019)

In the term “quadratic equation,” the key word is “quadratic.” This means that the equation must necessarily contain a variable (that same x) squared, and there should not be xes to the third (or greater) power.

The solution of many equations comes down to solving quadratic equations.

Let's learn to determine that this is a quadratic equation and not some other equation.

Example 1.

Let's get rid of the denominator and multiply each term of the equation by

Let's move everything to the left side and arrange the terms in descending order of powers of X

Now we can say with confidence that this equation is quadratic!

Example 2.

Multiply the left and right sides by:

This equation, although it was originally in it, is not quadratic!

Example 3.

Let's multiply everything by:

Scary? The fourth and second degrees... However, if we make a replacement, we will see that we have a simple quadratic equation:

Example 4.

It seems to be there, but let's take a closer look. Let's move everything to the left side:

See, it's reduced - and now it's a simple linear equation!

Now try to determine for yourself which of the following equations are quadratic and which are not:

Examples:

Answers:

  1. square;
  2. square;
  3. not square;
  4. not square;
  5. not square;
  6. square;
  7. not square;
  8. square.

Mathematicians conventionally divide all quadratic equations into the following types:

  • Complete quadratic equations- equations in which the coefficients and, as well as the free term c, are not equal to zero (as in the example). In addition, among complete quadratic equations there are given- these are equations in which the coefficient (the equation from example one is not only complete, but also reduced!)
  • Incomplete quadratic equations- equations in which the coefficient and or the free term c are equal to zero:

    They are incomplete because they are missing some element. But the equation must always contain x squared!!! Otherwise, it will no longer be a quadratic equation, but some other equation.

Why did they come up with such a division? It would seem that there is an X squared, and okay. This division is determined by the solution methods. Let's look at each of them in more detail.

Solving incomplete quadratic equations

First, let's focus on solving incomplete quadratic equations - they are much simpler!

There are types of incomplete quadratic equations:

  1. , in this equation the coefficient is equal.
  2. , in this equation the free term is equal to.
  3. , in this equation the coefficient and the free term are equal.

1. i. Since we know how to take the square root, let's express from this equation

The expression can be either negative or positive. A squared number cannot be negative, because when multiplying two negative or two positive numbers, the result will always be a positive number, so: if, then the equation has no solutions.

And if, then we get two roots. There is no need to memorize these formulas. The main thing is that you must know and always remember that it cannot be less.

Let's try to solve some examples.

Example 5:

Solve the equation

Now all that remains is to extract the root from the left and right sides. After all, you remember how to extract roots?

Answer:

Never forget about roots with a negative sign!!!

Example 6:

Solve the equation

Answer:

Example 7:

Solve the equation

Oh! The square of a number cannot be negative, which means that the equation

no roots!

For such equations that have no roots, mathematicians came up with a special icon - (empty set). And the answer can be written like this:

Answer:

Thus, this quadratic equation has two roots. There are no restrictions here, since we did not extract the root.
Example 8:

Solve the equation

Let's take the common factor out of brackets:

Thus,

This equation has two roots.

Answer:

The simplest type of incomplete quadratic equations (although they are all simple, right?). Obviously, this equation always has only one root:

We will dispense with examples here.

Solving complete quadratic equations

We remind you that a complete quadratic equation is an equation of the form equation where

Solving complete quadratic equations is a little more difficult (just a little) than these.

Remember, Any quadratic equation can be solved using a discriminant! Even incomplete.

The other methods will help you do it faster, but if you have problems with quadratic equations, first master the solution using the discriminant.

1. Solving quadratic equations using a discriminant.

Solving quadratic equations using this method is very simple; the main thing is to remember the sequence of actions and a couple of formulas.

If, then the equation has a root. Special attention take a step. Discriminant () tells us the number of roots of the equation.

  • If, then the formula in the step will be reduced to. Thus, the equation will only have a root.
  • If, then we will not be able to extract the root of the discriminant at the step. This indicates that the equation has no roots.

Let's go back to our equations and look at some examples.

Example 9:

Solve the equation

Step 1 we skip.

Step 2.

We find the discriminant:

This means the equation has two roots.

Step 3.

Answer:

Example 10:

Solve the equation

The equation is presented in standard form, so Step 1 we skip.

Step 2.

We find the discriminant:

This means that the equation has one root.

Answer:

Example 11:

Solve the equation

The equation is presented in standard form, so Step 1 we skip.

Step 2.

We find the discriminant:

This means we will not be able to extract the root of the discriminant. There are no roots of the equation.

Now we know how to correctly write down such answers.

Answer: no roots

2. Solving quadratic equations using Vieta's theorem.

If you remember, there is a type of equation that is called reduced (when the coefficient a is equal to):

Such equations are very easy to solve using Vieta’s theorem:

Sum of roots given quadratic equation is equal, and the product of the roots is equal.

Example 12:

Solve the equation

This equation can be solved using Vieta's theorem because .

The sum of the roots of the equation is equal, i.e. we get the first equation:

And the product is equal to:

Let's compose and solve the system:

  • And. The amount is equal to;
  • And. The amount is equal to;
  • And. The amount is equal.

and are the solution to the system:

Answer: ; .

Example 13:

Solve the equation

Answer:

Example 14:

Solve the equation

The equation is given, which means:

Answer:

QUADRATIC EQUATIONS. AVERAGE LEVEL

What is a quadratic equation?

In other words, a quadratic equation is an equation of the form, where - the unknown, - some numbers, and.

The number is called the highest or first coefficient quadratic equation, - second coefficient, A - free member.

Why? Because if the equation immediately becomes linear, because will disappear.

In this case, and can be equal to zero. In this chair equation is called incomplete. If all the terms are in place, that is, the equation is complete.

Solutions to various types of quadratic equations

Methods for solving incomplete quadratic equations:

First, let's look at methods for solving incomplete quadratic equations - they are simpler.

We can distinguish the following types of equations:

I., in this equation the coefficient and the free term are equal.

II. , in this equation the coefficient is equal.

III. , in this equation the free term is equal to.

Now let's look at the solution to each of these subtypes.

Obviously, this equation always has only one root:

A squared number cannot be negative, because when you multiply two negative or two positive numbers, the result will always be a positive number. That's why:

if, then the equation has no solutions;

if we have two roots

There is no need to memorize these formulas. The main thing to remember is that it cannot be less.

Examples:

Solutions:

Answer:

Never forget about roots with a negative sign!

The square of a number cannot be negative, which means that the equation

no roots.

To briefly write down that a problem has no solutions, we use the empty set icon.

Answer:

So, this equation has two roots: and.

Answer:

Let's take the common factor out of brackets:

The product is equal to zero if at least one of the factors is equal to zero. This means that the equation has a solution when:

So, this quadratic equation has two roots: and.

Example:

Solve the equation.

Solution:

Let's factor the left side of the equation and find the roots:

Answer:

Methods for solving complete quadratic equations:

1. Discriminant

Solving quadratic equations this way is easy, the main thing is to remember the sequence of actions and a couple of formulas. Remember, any quadratic equation can be solved using a discriminant! Even incomplete.

Did you notice the root from the discriminant in the formula for roots? But the discriminant can be negative. What to do? We need to pay special attention to step 2. The discriminant tells us the number of roots of the equation.

  • If, then the equation has roots:
  • If, then the equation has the same roots, and in fact, one root:

    Such roots are called double roots.

  • If, then the root of the discriminant is not extracted. This indicates that the equation has no roots.

Why are different numbers of roots possible? Let us turn to the geometric meaning of the quadratic equation. The graph of the function is a parabola:

In a special case, which is a quadratic equation, . This means that the roots of a quadratic equation are the points of intersection with the abscissa axis (axis). A parabola may not intersect the axis at all, or may intersect it at one (when the vertex of the parabola lies on the axis) or two points.

In addition, the coefficient is responsible for the direction of the branches of the parabola. If, then the branches of the parabola are directed upward, and if, then downward.

Examples:

Solutions:

Answer:

Answer: .

Answer:

This means there are no solutions.

Answer: .

2. Vieta's theorem

It is very easy to use Vieta's theorem: you just need to choose a pair of numbers whose product is equal to the free term of the equation, and the sum is equal to the second coefficient taken with the opposite sign.

It is important to remember that Vieta's theorem can only be applied in reduced quadratic equations ().

Let's look at a few examples:

Example #1:

Solve the equation.

Solution:

This equation can be solved using Vieta's theorem because . Other coefficients: ; .

The sum of the roots of the equation is:

And the product is equal to:

Let's select pairs of numbers whose product is equal and check whether their sum is equal:

  • And. The amount is equal to;
  • And. The amount is equal to;
  • And. The amount is equal.

and are the solution to the system:

Thus, and are the roots of our equation.

Answer: ; .

Example #2:

Solution:

Let's select pairs of numbers that give in the product, and then check whether their sum is equal:

and: they give in total.

and: they give in total. To obtain, it is enough to simply change the signs of the supposed roots: and, after all, the product.

Answer:

Example #3:

Solution:

The free term of the equation is negative, and therefore the product of the roots is a negative number. This is only possible if one of the roots is negative and the other is positive. Therefore the sum of the roots is equal to differences of their modules.

Let us select pairs of numbers that give in the product, and whose difference is equal to:

and: their difference is equal - does not fit;

and: - not suitable;

and: - not suitable;

and: - suitable. All that remains is to remember that one of the roots is negative. Since their sum must be equal, the root with the smaller modulus must be negative: . We check:

Answer:

Example #4:

Solve the equation.

Solution:

The equation is given, which means:

The free term is negative, and therefore the product of the roots is negative. And this is only possible when one root of the equation is negative and the other is positive.

Let's select pairs of numbers whose product is equal, and then determine which roots should have a negative sign:

Obviously, only the roots and are suitable for the first condition:

Answer:

Example #5:

Solve the equation.

Solution:

The equation is given, which means:

The sum of the roots is negative, which means that at least one of the roots is negative. But since their product is positive, it means both roots have a minus sign.

Let us select pairs of numbers whose product is equal to:

Obviously, the roots are the numbers and.

Answer:

Agree, it’s very convenient to come up with roots orally, instead of counting this nasty discriminant. Try to use Vieta's theorem as often as possible.

But Vieta’s theorem is needed in order to facilitate and speed up finding the roots. In order for you to benefit from using it, you must bring the actions to automaticity. And for this, solve five more examples. But don't cheat: you can't use a discriminant! Only Vieta's theorem:

Solutions to tasks for independent work:

Task 1. ((x)^(2))-8x+12=0

According to Vieta's theorem:

As usual, we start the selection with the piece:

Not suitable because the amount;

: the amount is just what you need.

Answer: ; .

Task 2.

And again our favorite Vieta theorem: the sum must be equal, and the product must be equal.

But since it must be not, but, we change the signs of the roots: and (in total).

Answer: ; .

Task 3.

Hmm... Where is that?

You need to move all the terms into one part:

The sum of the roots is equal to the product.

Okay, stop! The equation is not given. But Vieta's theorem is applicable only in the given equations. So first you need to give an equation. If you can’t lead, give up this idea and solve it in another way (for example, through a discriminant). Let me remind you that to give a quadratic equation means to make the leading coefficient equal:

Great. Then the sum of the roots is equal to and the product.

Here it’s as easy as shelling pears to choose: after all, it’s a prime number (sorry for the tautology).

Answer: ; .

Task 4.

The free member is negative. What's special about this? And the fact is that the roots will have different signs. And now, during the selection, we check not the sum of the roots, but the difference in their modules: this difference is equal, but a product.

So, the roots are equal to and, but one of them is minus. Vieta's theorem tells us that the sum of the roots is equal to the second coefficient with the opposite sign, that is. This means that the smaller root will have a minus: and, since.

Answer: ; .

Task 5.

What should you do first? That's right, give the equation:

Again: we select the factors of the number, and their difference should be equal to:

The roots are equal to and, but one of them is minus. Which? Their sum should be equal, which means that the minus will have a larger root.

Answer: ; .

Let me summarize:
  1. Vieta's theorem is used only in the quadratic equations given.
  2. Using Vieta's theorem, you can find the roots by selection, orally.
  3. If the equation is not given or no suitable pair of factors of the free term is found, then there are no whole roots, and you need to solve it in another way (for example, through a discriminant).

3. Method for selecting a complete square

If all terms containing the unknown are represented in the form of terms from abbreviated multiplication formulas - the square of the sum or difference - then after replacing variables, the equation can be presented in the form of an incomplete quadratic equation of the type.

For example:

Example 1:

Solve the equation: .

Solution:

Answer:

Example 2:

Solve the equation: .

Solution:

Answer:

IN general view the transformation will look like this:

This implies: .

Doesn't remind you of anything? This is a discriminatory thing! That's exactly how we got the discriminant formula.

QUADRATIC EQUATIONS. BRIEFLY ABOUT THE MAIN THINGS

Quadratic equation- this is an equation of the form, where - the unknown, - the coefficients of the quadratic equation, - the free term.

Complete quadratic equation- an equation in which the coefficients are not equal to zero.

Reduced quadratic equation- an equation in which the coefficient, that is: .

Incomplete quadratic equation- an equation in which the coefficient and or the free term c are equal to zero:

  • if the coefficient, the equation looks like: ,
  • if there is a free term, the equation has the form: ,
  • if and, the equation looks like: .

1. Algorithm for solving incomplete quadratic equations

1.1. An incomplete quadratic equation of the form, where, :

1) Let's express the unknown: ,

2) Check the sign of the expression:

  • if, then the equation has no solutions,
  • if, then the equation has two roots.

1.2. An incomplete quadratic equation of the form, where, :

1) Let’s take the common factor out of brackets: ,

2) The product is equal to zero if at least one of the factors is equal to zero. Therefore, the equation has two roots:

1.3. An incomplete quadratic equation of the form, where:

This equation always has only one root: .

2. Algorithm for solving complete quadratic equations of the form where

2.1. Solution using discriminant

1) Let's bring the equation to standard form: ,

2) Let's calculate the discriminant using the formula: , which indicates the number of roots of the equation:

3) Find the roots of the equation:

  • if, then the equation has roots, which are found by the formula:
  • if, then the equation has a root, which is found by the formula:
  • if, then the equation has no roots.

2.2. Solution using Vieta's theorem

The sum of the roots of the reduced quadratic equation (equation of the form where) is equal, and the product of the roots is equal, i.e. , A.

2.3. Solution by the method of selecting a complete square

If a quadratic equation of the form has roots, then it can be written in the form: .

Well, the topic is over. If you are reading these lines, it means you are very cool.

Because only 5% of people are able to master something on their own. And if you read to the end, then you are in this 5%!

Now the most important thing.

You have understood the theory on this topic. And, I repeat, this... this is just super! You're already better than absolute majority your peers.

The problem is that this may not be enough...

For what?

For successful completion Unified State Exam, for admission to college on a budget and, MOST IMPORTANTLY, for life.

I won’t convince you of anything, I’ll just say one thing...

People who received a good education, earn much more than those who did not receive it. This is statistics.

But this is not the main thing.

The main thing is that they are MORE HAPPY (there are such studies). Perhaps because many more opportunities open up before them and life becomes brighter? Don't know...

But think for yourself...

What does it take to be sure to be better than others on the Unified State Exam and ultimately be... happier?

GAIN YOUR HAND BY SOLVING PROBLEMS ON THIS TOPIC.

You won't be asked for theory during the exam.

You will need solve problems against time.

And, if you haven’t solved them (A LOT!), you’ll definitely make a stupid mistake somewhere or simply won’t have time.

It's like in sports - you need to repeat it many times to win for sure.

Find the collection wherever you want, necessarily with solutions, detailed analysis and decide, decide, decide!

You can use our tasks (optional) and we, of course, recommend them.

In order to get better at using our tasks, you need to help extend the life of the YouClever textbook you are currently reading.

How? There are two options:

  1. Unlock all hidden tasks in this article - 299 rub.
  2. Unlock access to all hidden tasks in all 99 articles of the textbook - 499 rub.

Yes, we have 99 such articles in our textbook and access to all tasks and all hidden texts in them can be opened immediately.

Access to all hidden tasks is provided for the ENTIRE life of the site.

In conclusion...

If you don't like our tasks, find others. Just don't stop at theory.

“Understood” and “I can solve” are completely different skills. You need both.

Find problems and solve them!

A quadratic equation is an equation that looks like ax 2 + dx + c = 0. It has meaning a,c And With any numbers, and A not equal to zero.

All quadratic equations are divided into several types, namely:

Equations with only one root.
-Equations with two different roots.
-Equations in which there are no roots at all.

This is what differentiates linear equations in which the root is always the same, from square. In order to understand how many roots are in the expression, you need Discriminant of a quadratic equation.

Let's assume our equation ax 2 + dx + c =0. Means discriminant of a quadratic equation -

D = b 2 - 4 ac

And this must be remembered forever. Using this equation we determine the number of roots in the quadratic equation. And we do it this way:

When D is less than zero, there are no roots in the equation.
- When D is zero, there is only one root.
- When D is greater than zero, the equation has two roots.
Remember that the discriminant shows how many roots are in the equation without changing the signs.

Let's consider for clarity:

We need to find out how many roots there are in this quadratic equation.

1) x 2 - 8x + 12 = 0
2)5x 2 + 3x + 7 = 0
3) x 2 -6x + 9 = 0

We enter the values ​​into the first equation and find the discriminant.
a = 1, b = -8, c = 12
D = (-8) 2 - 4 * 1 * 12 = 64 - 48 = 16
The discriminant has a plus sign, which means there are two roots in this equality.

We do the same with the second equation
a = 1, b = 3, c = 7
D = 3 2 - 4 * 5 * 7 = 9 - 140 = - 131
The value is negative, which means there are no roots in this equality.

Let us expand the following equation by analogy.
a = 1, b = -6, c = 9
D = (-6) 2 - 4 * 1 * 9 = 36 - 36 = 0
as a consequence, we have one root in the equation.

It is important that in each equation we wrote out the coefficients. Of course, this is not a very long process, but it helped us not get confused and prevented errors from occurring. If you solve similar equations very often, then you can perform the calculations mentally and know in advance how many roots the equation has.

Let's look at another example:

1) x 2 - 2x - 3 = 0
2) 15 - 2x - x 2 = 0
3) x 2 + 12x + 36 = 0

Let's lay out the first
a = 1, b = -2, c = -3
D =(-2) 2 - 4 * 1 * (-3) = 16, which is greater than zero, which means two roots, let’s derive them
x 1 = 2+?16/2 * 1 = 3, x 2 = 2-?16/2 * 1 = -1.

We lay out the second
a = -1, b = -2, c = 15
D = (-2) 2 - 4 * 4 * (-1) * 15 = 64, which is greater than zero and also has two roots. Let's display them:
x 1 = 2+?64/2 * (-1) = -5, x 2 = 2-?64/2 *(-1) = 3.

We lay out the third
a = 1, b = 12, c = 36
D = 12 2 - 4 * 1 * 36 =0, which is equal to zero and has one root
x = -12 + ?0/2 * 1 = -6.
Solving these equations is not difficult.

If we are given an incomplete quadratic equation. Such as

1x 2 + 9x = 0
2x 2 - 16 = 0

These equations differ from those above, since it is not complete, there is no third value in it. But despite this, it is simpler than a complete quadratic equation and there is no need to look for a discriminant in it.

What to do when you need it urgently graduate work or an essay, but don’t have time to write it? All this and much more can be ordered on the Deeplom.by website (http://deeplom.by/) and get the highest score.

Formulas for the roots of a quadratic equation. The cases of real, multiple and complex roots are considered. Factoring a quadratic trinomial. Geometric interpretation. Examples of determining roots and factoring.

Basic formulas

Consider the quadratic equation:
(1) .
Roots of a quadratic equation(1) are determined by the formulas:
; .
These formulas can be combined like this:
.
When the roots of a quadratic equation are known, then a polynomial of the second degree can be represented as a product of factors (factored):
.

We further assume that - real numbers.
Let's consider discriminant of a quadratic equation:
.
If the discriminant is positive, then the quadratic equation (1) has two different real roots:
; .
Then the factorization of the quadratic trinomial has the form:
.
If the discriminant is equal to zero, then the quadratic equation (1) has two multiple (equal) real roots:
.
Factorization:
.
If the discriminant is negative, then the quadratic equation (1) has two complex conjugate roots:
;
.
Here is the imaginary unit, ;
and are the real and imaginary parts of the roots:
; .
Then

.

Graphic interpretation

If you build graph of a function
,
which is a parabola, then the points of intersection of the graph with the axis will be the roots of the equation
.
At , the graph intersects the x-axis (axis) at two points.
When , the graph touches the x-axis at one point.
When , the graph does not cross the x-axis.

Below are examples of such graphs.

Useful formulas related to quadratic equation

(f.1) ;
(f.2) ;
(f.3) .

Derivation of the formula for the roots of a quadratic equation

We carry out transformations and apply formulas (f.1) and (f.3):




,
Where
; .

So, we got the formula for a polynomial of the second degree in the form:
.
This shows that the equation

performed at
And .
That is, and are the roots of the quadratic equation
.

Examples of determining the roots of a quadratic equation

Example 1


(1.1) .

Solution


.
Comparing with our equation (1.1), we find the values ​​of the coefficients:
.
We find the discriminant:
.
Since the discriminant is positive, the equation has two real roots:
;
;
.

From here we obtain the factorization of the quadratic trinomial:

.

Graph of the function y = 2 x 2 + 7 x + 3 intersects the x-axis at two points.

Let's plot the function
.
The graph of this function is a parabola. It crosses the abscissa axis (axis) at two points:
And .
These points are the roots of the original equation (1.1).

Answer

;
;
.

Example 2

Find the roots of a quadratic equation:
(2.1) .

Solution

Let's write the quadratic equation in general form:
.
Comparing with the original equation (2.1), we find the values ​​of the coefficients:
.
We find the discriminant:
.
Since the discriminant is zero, the equation has two multiple (equal) roots:
;
.

Then the factorization of the trinomial has the form:
.

Graph of the function y = x 2 - 4 x + 4 touches the x-axis at one point.

Let's plot the function
.
The graph of this function is a parabola. It touches the x-axis (axis) at one point:
.
This point is the root of the original equation (2.1). Because this root is factored twice:
,
then such a root is usually called a multiple. That is, they believe that there are two equal roots:
.

Answer

;
.

Example 3

Find the roots of a quadratic equation:
(3.1) .

Solution

Let's write the quadratic equation in general form:
(1) .
Let's rewrite the original equation (3.1):
.
Comparing with (1), we find the values ​​of the coefficients:
.
We find the discriminant:
.
The discriminant is negative, . Therefore there are no real roots.

You can find complex roots:
;
;
.

Then


.

The graph of the function does not cross the x-axis. There are no real roots.

Let's plot the function
.
The graph of this function is a parabola. It does not intersect the x-axis (axis). Therefore there are no real roots.

Answer

There are no real roots. Complex roots:
;
;
.

Quadratic equation problems are also studied in school curriculum and in universities. They mean equations of the form a*x^2 + b*x + c = 0, where x- variable, a, b, c – constants; a<>0 . The task is to find the roots of the equation.

Geometric meaning of quadratic equation

The graph of a function that is represented by a quadratic equation is a parabola. The solutions (roots) of a quadratic equation are the points of intersection of the parabola with the abscissa (x) axis. It follows that there are three possible cases:
1) the parabola has no points of intersection with the abscissa axis. This means that it is in the upper plane with branches up or the bottom with branches down. In such cases, the quadratic equation has no real roots (it has two complex roots).

2) the parabola has one point of intersection with the Ox axis. Such a point is called the vertex of the parabola, and the quadratic equation at it acquires its minimum or maximum value. In this case, the quadratic equation has one real root (or two identical roots).

3) The last case is more interesting in practice - there are two points of intersection of the parabola with the abscissa axis. This means that there are two real roots of the equation.

Based on the analysis of the coefficients of the powers of the variables, interesting conclusions can be drawn about the placement of the parabola.

1) If the coefficient a is greater than zero, then the parabola’s branches are directed upward; if it is negative, the parabola’s branches are directed downward.

2) If the coefficient b is greater than zero, then the vertex of the parabola lies in the left half-plane, if it takes a negative value, then in the right.

Derivation of the formula for solving a quadratic equation

Let's transfer the constant from the quadratic equation

for the equal sign, we get the expression

Multiply both sides by 4a

To get a complete square on the left, add b^2 on both sides and carry out the transformation

From here we find

Formula for the discriminant and roots of a quadratic equation

The discriminant is the value of the radical expression. If it is positive, then the equation has two real roots, calculated by the formula When the discriminant is zero, the quadratic equation has one solution (two coinciding roots), which can be easily obtained from the above formula for D=0. When the discriminant is negative, the equation has no real roots. However, solutions to the quadratic equation are found in the complex plane, and their value is calculated using the formula

Vieta's theorem

Let's consider two roots of a quadratic equation and construct a quadratic equation on their basis. Vieta's theorem itself easily follows from the notation: if we have a quadratic equation of the form then the sum of its roots is equal to the coefficient p taken with the opposite sign, and the product of the roots of the equation is equal to the free term q. The formulaic representation of the above will look like If in a classical equation the constant a is nonzero, then you need to divide the entire equation by it, and then apply Vieta’s theorem.

Factoring quadratic equation schedule

Let the task be set: factor a quadratic equation. To do this, we first solve the equation (find the roots). Next, we substitute the found roots into the expansion formula for the quadratic equation. This will solve the problem.

Quadratic equation problems

Task 1. Find the roots of a quadratic equation

x^2-26x+120=0 .

Solution: Write down the coefficients and substitute them into the discriminant formula

Root of given value is equal to 14, it is easy to find with a calculator, or remember with frequent use, however, for convenience, at the end of the article I will give you a list of squares of numbers that can often be encountered in such problems.
We substitute the found value into the root formula

and we get

Task 2. Solve the equation

2x 2 +x-3=0.

Solution: We have a complete quadratic equation, write out the coefficients and find the discriminant


Using known formulas we find the roots of the quadratic equation

Task 3. Solve the equation

9x 2 -12x+4=0.

Solution: We have a complete quadratic equation. Determining the discriminant

We got a case where the roots coincide. Find the values ​​of the roots using the formula

Task 4. Solve the equation

x^2+x-6=0 .

Solution: In cases where there are small coefficients for x, it is advisable to apply Vieta’s theorem. By its condition we obtain two equations

From the second condition we find that the product must be equal to -6. This means that one of the roots is negative. We have the following possible pair of solutions (-3;2), (3;-2) . Taking into account the first condition, we reject the second pair of solutions.
The roots of the equation are equal

Problem 5. Find the lengths of the sides of a rectangle if its perimeter is 18 cm and its area is 77 cm 2.

Solution: Half the perimeter of a rectangle is equal to the sum of its adjacent sides. Let's denote x as the larger side, then 18-x is its smaller side. The area of ​​the rectangle is equal to the product of these lengths:
x(18-x)=77;
or
x 2 -18x+77=0.
Let's find the discriminant of the equation

Calculating the roots of the equation

If x=11, That 18's=7 , the opposite is also true (if x=7, then 21's=9).

Problem 6. Factor the quadratic equation 10x 2 -11x+3=0.

Solution: Let's calculate the roots of the equation, to do this we find the discriminant

We substitute the found value into the root formula and calculate

We apply the formula for decomposing a quadratic equation by roots

Opening the brackets we obtain an identity.

Quadratic equation with parameter

Example 1. At what parameter values A , does the equation (a-3)x 2 + (3-a)x-1/4=0 have one root?

Solution: By direct substitution of the value a=3 we see that it has no solution. Next, we will use the fact that with a zero discriminant the equation has one root of multiplicity 2. Let's write out the discriminant

Let's simplify it and equate it to zero

We have obtained a quadratic equation with respect to the parameter a, the solution of which can be easily obtained using Vieta’s theorem. The sum of the roots is 7, and their product is 12. By simple search we establish that the numbers 3,4 will be the roots of the equation. Since we already rejected the solution a=3 at the beginning of the calculations, the only correct one will be - a=4. Thus, for a=4 the equation has one root.

Example 2. At what parameter values A , the equation a(a+3)x^2+(2a+6)x-3a-9=0 has more than one root?

Solution: Let's first consider the singular points, they will be the values ​​a=0 and a=-3. When a=0, the equation will be simplified to the form 6x-9=0; x=3/2 and there will be one root. For a= -3 we obtain the identity 0=0.
Let's calculate the discriminant

and find the value of a at which it is positive

From the first condition we get a>3. For the second, we find the discriminant and roots of the equation


Let's define the intervals where the function takes positive values. By substituting the point a=0 we get 3>0 . So, outside the interval (-3;1/3) the function is negative. Don't forget the point a=0, which should be excluded because the original equation has one root in it.
As a result, we obtain two intervals that satisfy the conditions of the problem

There will be many similar tasks in practice, try to figure out the tasks yourself and do not forget to take into account the conditions that are mutually exclusive. Study well the formulas for solving quadratic equations; they are often needed in calculations in various problems and sciences.

I hope that after studying this article you will learn how to find the roots of a complete quadratic equation.

Using the discriminant, only complete quadratic equations are solved; to solve incomplete quadratic equations, other methods are used, which you will find in the article “Solving incomplete quadratic equations.”

What quadratic equations are called complete? This equations of the form ax 2 + b x + c = 0, where coefficients a, b and c are not equal to zero. So, to solve a complete quadratic equation, we need to calculate the discriminant D.

D = b 2 – 4ac.

Depending on the value of the discriminant, we will write down the answer.

If the discriminant is a negative number (D< 0),то корней нет.

If the discriminant is zero, then x = (-b)/2a. When the discriminant is a positive number (D > 0),

then x 1 = (-b - √D)/2a, and x 2 = (-b + √D)/2a.

For example. Solve the equation x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Answer: 2.

Solve Equation 2 x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Answer: no roots.

Solve Equation 2 x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3.5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Answer: – 3.5; 1.

So let’s imagine the solution of complete quadratic equations using the diagram in Figure 1.

Using these formulas you can solve any complete quadratic equation. You just need to be careful to the equation was written as a polynomial standard view

A x 2 + bx + c, otherwise you may make a mistake. For example, in writing the equation x + 3 + 2x 2 = 0, you can mistakenly decide that

a = 1, b = 3 and c = 2. Then

D = 3 2 – 4 1 2 = 1 and then the equation has two roots. And this is not true. (See solution to example 2 above).

Therefore, if the equation is not written as a polynomial of the standard form, first the complete quadratic equation must be written as a polynomial of the standard form (the monomial with the largest exponent should come first, that is A x 2 , then with less bx and then a free member With.

When solving the reduced quadratic equation and a quadratic equation with an even coefficient in the second term, you can use other formulas. Let's get acquainted with these formulas. If in a complete quadratic equation the second term has an even coefficient (b = 2k), then you can solve the equation using the formulas shown in the diagram in Figure 2.

A complete quadratic equation is called reduced if the coefficient at x 2 is equal to one and the equation takes the form x 2 + px + q = 0. Such an equation can be given for solution, or it can be obtained by dividing all coefficients of the equation by the coefficient A, standing at x 2 .

Figure 3 shows a diagram for solving the reduced square
equations. Let's look at an example of the application of the formulas discussed in this article.

Example. Solve the equation

3x 2 + 6x – 6 = 0.

Let's solve this equation using the formulas shown in the diagram in Figure 1.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Answer: –1 – √3; –1 + √3

You can notice that the coefficient of x in this equation is an even number, that is, b = 6 or b = 2k, whence k = 3. Then let’s try to solve the equation using the formulas shown in the diagram of the figure D 1 = 3 2 – 3 · (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Answer: –1 – √3; –1 + √3. Noticing that all the coefficients in this quadratic equation are divisible by 3 and performing the division, we get the reduced quadratic equation x 2 + 2x – 2 = 0 Solve this equation using the formulas for the reduced quadratic
equations figure 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Answer: –1 – √3; –1 + √3.

As you can see, when solving this equation using different formulas, we received the same answer. Therefore, having thoroughly mastered the formulas shown in the diagram in Figure 1, you will always be able to solve any complete quadratic equation.

website, when copying material in full or in part, a link to the source is required.

Share