Большая энциклопедия нефти и газа. Гидродинамические условия работы электродвигателя погружной установки

Гидродинамика - раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.

Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

3.1. Основные понятия о движении жидкости

Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы - круг (рис.3.1, б); живое сечение клапана - кольцо с изменяющимся внутренним диаметром (рис.3.1, б).

Рис. 3.1. Живые сечения: а - трубы, б - клапана

Смоченный периметр χ ("хи") - часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).

Рис. 3.2. Смоченный периметр

Для круглой трубы

если угол в радианах, или

Расход потока Q - объем жидкости V , протекающей за единицу времени t через живое сечение ω.

Средняя скорость потока υ - скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Гидравлический радиус потока R - отношение живого сечения к смоченному периметру

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

υ = f(x, y, z)

P = φ f(x, y, z)

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

υ = f 1 (x, y, z, t)

P = φ f 1 (x, y, z, t)

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока - трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой .

Рис. 3.3. Линия тока и струйка

Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное - течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

Рис. 3.4. Труба с переменным диаметром при постоянном расходе

Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q 1 =Q 2 = const , откуда

ω 1 υ 1 = ω 2 υ 2

Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

3.2. Уравнение Бернулли для идеальной жидкости

Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P , средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.

Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).

Рис.3.5. Схема к выводу уравнения Бернулли для идеальной жидкости

Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2 . Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q .

Для измерения давления жидкости применяют пьезометры - тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту . В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.

Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито . Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии .

Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).

Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0 , называемой плоскостью сравнения , будет одинакова.

Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода .

Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:

Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:

С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:

z1 и z2 - удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2 ;
- удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;
- удельные кинетические энергии в тех же сечениях.

Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна .

Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 - геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; - пьезометрические высоты; - скоростные высоты в указанных сечениях.

В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная .

3.3. Уравнение Бернулли для реальной жидкости

Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения

Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).

Рис.3.6. Схема к выводу уравнения Бернулли для реальной жидкости

Потерянная энергия или потерянный напор обозначаются и имеют также линейную размерность.

Уравнение Бернулли для реальной жидкости будет иметь вид:

Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2 .

Кроме этого в уравнении появились еще два коэффициента α 1 и α 2 , которые называются коэффициентами Кориолиса и зависят от режима течения жидкости (α = 2 для ламинарного режима, α = 1 для турбулентного режима).

В механике жидкости такому понятию, как «гидродинамика», придается достаточно широкий смысл. Гидродинамика жидкости, в свою очередь, рассматривает несколько направлений для изучения.

Так, основными из направлений являются следующие:

  • гидродинамика идеальной жидкости;
  • гидродинамика жидкости в критическом состоянии;
  • гидродинамика вязкой жидкости.

Гидродинамика идеальной жидкости

Идеальная жидкость в гидродинамике представляет собой воображаемую несжимаемую жидкость, в которой вязкость будет отсутствовать. Также в ней не будет наблюдаться присутствие теплопроводности и внутреннего трения. В связи с отсутствием в идеальной жидкости внутреннего трения, в нем также не будут фиксироваться касательные напряжения между двумя соседствующими слоями жидкости.

Моделью идеальной жидкости можно воспользоваться в физике в случае теоретического рассмотрения задач, в которых вязкость не будет являться определяющим фактором, что позволяет ею пренебречь. Подобная идеализация, в частности, может быть допустимой во многих случаях течения, которые рассматривает гидроаэромеханика, где при этом дается качественное описание реальных течений жидкостей, достаточно удаленных от поверхностей раздела с неподвижной средой.

Уравнения Эйлера-Лагранжа (полученные Л.Эйлером и Ж.Лагранжем в 1750 г.) представлены в физике в формате основных формул вариационного исчисления, посредством привлечения которых ведется поиск стационарных точек и экстремумов функционалов. В частности, подобные уравнения известны своим широким использованием в рассмотрении задач оптимизации, и также (в совокупности с принципом наименьшего действия) применяются с целью вычисления траекторий в механике.

В теоретической физике уравнения Лагранжа представлены в виде классических уравнений движения в контексте их получения из написанного явно выражения для действия (что называется лагранжиана).

Рисунок 2. Уравнение Эйлера-Лагранжа. Автор24 - интернет-биржа студенческих работ

Применение таких уравнений с целью определения экстремума функционала в некотором смысле подобно задействованию теоремы дифференциального исчисления, согласно утверждениям которой, лишь в точке обращения первой производной в ноль гладкая функция обретает способность иметь экстремум (при векторном аргументе к нулевому значению приравнивается нулю градиент функции, иными словами - производная по векторному аргументу). Соответственно, это представляет прямое обобщение рассматриваемой формулы на случай функционалов (функций бесконечно мерного аргумента).

Гидродинамика жидкости в критическом состоянии

Рисунок 3. Следствия из уравнения Бернулли. Автор24 - интернет-биржа студенческих работ

Замечание 1

В случае исследования околокритического состояния среды, ее течению будет уделяться значительно меньше внимания в сравнении с акцентом на физические свойства, несмотря на невозможность обладать свойством неподвижности для реальной жидкой субстанции.

Провокаторами перемещения отдельных частей относительно друг друга выступают:

  • температурные неоднородности;
  • перепады давления.

В случае описания динамики вблизи критической точки, оказывается несовершенными традиционные гидродинамические модели, сориентированные на обычные среды. Это обусловлено порождением новых законов движения новыми физическими свойствами.

Выделяются также динамические критические явления, обнаруживаемые в условиях перемещения массы и переноса тепла. В частности, процесс рассасывания (или релаксации) температурных неоднородностей, обусловленный механизмом теплопроводности, будет происходить крайне медленно. Так, если, например, в околокритической жидкости будет изменена температура хотя бы на сотые доли градуса, на установление прежних условий уйдут многие часы, а, возможно, даже и несколько суток.

В качестве еще одной значимой особенности околокритических жидкостей можно назвать их удивительную подвижность, которую можно объяснить за счет высокой гравитационной чувствительности. Так, в экспериментах, осуществляемых в условиях космического полета, удалось выявить способность к инициированию весьма заметных конвективных движений даже у остаточных неоднородностей теплового поля.

В ходе движения околокритических жидкостей начинают возникать эффекты разновременных масштабов, зачастую описываемые различными моделями, что позволило сформировать (с развитием представлений о моделировании в данной области) целую последовательность усложняющихся моделей, обладающих так называемой иерархической структурой. Так, в данной структуре могут рассматриваться:

  • модели конвекции несжимаемой жидкости, учитывая разность плотностей только в архимедовой силе (модель Обербека-Буссинеска, наиболее всего она распространена для простых жидких и газовых сред);
  • полные гидродинамические модели (с включением нестационарных уравнений динамики и теплопереноса и учетом свойства сжимаемости и переменных теплофизических свойств среды) в совокупности с уравнением состояния, предполагающим присутствие критической точки).

В настоящее время, таким образом, можно говорить о возможности активного развития нового направления в механике сплошных сред, таком, как гидродинамика околокритических жидкостей.

Гидродинамика вязкой жидкости

Определение 1

Вязкость (или внутреннее трение) является свойством реальных жидкостей, выраженным в оказании их сопротивления перемещениям одной части жидкости относительно другой. В момент перемещения одних слоев реальной жидкости относительно других будут возникать силы внутреннего трения, направленные к поверхности таких слоев по касательной.

Действие подобных сил выражается в том, что со стороны движущегося быстрее слоя на то слой, который движется медленнее, оказывает непосредственное воздействие ускоряющая сила. Наряду с тем, со стороны более медленно движущегося слоя в отношении быстродвижущегося окажет свое воздействие тормозящая сила.

Идеальная жидкость (жидкость, исключающая свойство трения) представляет собой абстракцию. Вязкость (в большей или меньшей степени) присуща всем реальным жидкостям. Проявление вязкости выражено в том, что возникшее в жидкости или газе движение (после устранения вызвавших его причин и их последствий) постепенно прекращает свою работу.

ОПРЕДЕЛЕНИЕ

Гидродинамика относится к физике сплошной среды, она исследует законы движения и равновесия жидкости и газа.

Описывает взаимодействие жидкости (реального газа) с движущимися и неподвижными поверхностями.

Перемещение жидкости принципиально отличается от движения твердых тел. В своем движении жидкость не может сохранять неизменным расстояние между ее частицами. Если рассматривать движение элементарного объема жидкости, то его можно представить как сумму трех движений: поступательного и вращательного перемещения всего объема жидкости как целого, и движение разных частиц рассматриваемого объема по отношению друг к другу. При движении жидкости следует учитывать массовые силы и силы трения (вязкость).

Задачи гидродинамики

Жидкость, находящаяся в движении обычно характеризуется при помощи двух параметров: скорости течения () и гидродинамического давления (). Следовательно, к основным задачам гидродинамики относят определения этих параметров при известной системе действующих внешних сил.

В процессе движения жидкости и способны изменяться в зависимости от времени и точки в пространстве. При этом выделяют два типа движения жидкости установившееся и неустановившееся.

Движение, при котором и являются постоянными во времени для любой точки жидкости в пространстве и являются функция координат, называют установившимся. При неустановившемся течении скорость и давление являются функциями и от времени и от координат.

В гидродинамике используют понятие жидкой частицы. Это условно выделяемый элементарный объем жидкости, изменением формы которого можно пренебречь. Частица жидкости при своем движении описывает кривую, которая носит название траектории движения.

Потоком жидкости считают перемещающуюся массу жидкости, которая полностью или частично ограничена поверхностями. Эти поверхности могут образовываться самой жидкостью на фазовой границе или быть твердыми. Границы потоков - это стенки трубы, канала, поверхность, которую жидкость обтекает, открытая поверхность жидкости.

Небольшая сжимаемость жидкости позволяет во многих случаях полностью пренебречь изменением ее объема. Тогда говорят о несжимаемой жидкости. Это идеализация, которую часто используют. Говорят, что несжимаемая жидкость - предельный случай сжимаемой жидкости, когда для получения бесконечно больших давлений, достаточно бесконечно малых сжатий.

Жидкость, в которой при любом ее движении не возникают силы внутреннего трения, называют идеальной. Иначе говоря, в идеальной жидкости существуют только силы нормального давления, которые однозначно определяются степенью сжатия и температурой жидкости. Модель идеальной жидкости используют тогда, когда скорости изменения деформаций в жидкости малы.

Физическая величина, которая определяется нормальной силой, с которой жидкость действует на единицу площади поверхности, называют давлением ():

Давление при равновесии жидкости подчиняется закону Паскаля:

Давление в любой точке покоящейся жидкости одинаково во всех направлениях. Давление одинаково передается во всем объеме, которое жидкость занимает.

Сила давления на нижние слои жидкости больше, чем на верхние. Вследствие этого на тело, погруженное в жидкость (газ) действует выталкивающая сила, называемая силой Архимеда ():

где - плотность жидкости; - объем тела, погруженного в жидкость.

В состоянии равновесия жидкости (газа) давление () меняется в зависимости от плотности ( и температуры () и однозначно определено ими. Соотношение:

в состоянии равновесия называют уравнением состояния.

Основные уравнения равновесия и движения жидкостей

Силы, действующие в жидкости, обычно разделяют на массовые (объемные) и поверхностные. Примером массовых сил может служить сила тяжести. Обозначим - объемную плотность массовых сил. Поверхностные силы - это силы, которые действуют на каждый объем жидкости, благодаря нормальным и касательным напряжениям, действующим на его поверхности со стороны соседних частей жидкости.

Основным уравнением гидростатики является выражение:

Уравнение (4) показывает, что при равновесии жидкости плотность силы, действующая на единицу объема жидкости ( есть градиент скалярной функции. Это необходимое и достаточное условие консервативности плотности силы . Получается, что для равновесия жидкости надо, чтобы поле сил, в котором находится жидкость, было консервативным. В неконсервативных силовых полях равновесие не возможно.

В координатной форме формулу (4) запишем как:

Основным уравнением гидродинамики идеальной жидкости является выражение:

где ускорение жидкости в рассматриваемой точке. Уравнение (6) называется уравнением Эйлера.

Уравнением Бернулли получено швейцарским физиком Д. Бернулли в 1738 г. Это выражение закона сохранения энергии относительно установившегося течения идеальной жидкости:

где - статическое давление - давление жидкости на поверхности тела, которое она обтекает; — динамическое давление; — гидростатическое давление; — высота столба жидкости.

Графически движение жидкости изображают при помощи линий тока. Их проводят так, что касательные к ним совпадают по направлению с вектором скорости в соответствующих точках пространства. Жидкость, ограниченную линиями тока называют трубкой тока. При стационарном течении жидкости форма и расположение линий тока не изменяется.

Движение несжимаемой жидкости подчиняется уравнению неразрывности, которое записывают как:

И - сечения трубки тока.

Примеры решения задач

ПРИМЕР 1

Задание Запишите уравнение равновесия жидкости в случаях: а) когда массовых сил нет; б) жидкость находится в поле тяжести. Поясните, что следует из записанных уравнений?
Решение а) Если массовые силы равны нулю (), то уравнение гидростатики запишем как:

Следовательно, при равновесии давление одинаково по всему объему жидкости.

б) Если жидкость находится в поле тяжести, то . Направим ось Z вертикально вверх. Тогда основные уравнения равновесия можно записать как:

Из уравнений (1.2) следует, что при механическом равновесии давление не зависит от координат x, y. Оно остается постоянным в любой горизонтальной плоскости . Горизонтальные плоскости являются плоскостями равного давления. Так, свободная поверхность жидкости является горизонтальной, так как она находится под постоянным атмосферным давлением. Из третьего уравнения системы (1.2) следует, что для механического равновесия надо, чтобы являлось функцией только от . Если зависимостью ускорения свободного падения от широты и долготы пренебречь, то плотность изменяется только в зависимости от высоты. А из уравнения состояния:

следует, что при механическом равновесии давление, температура и плотность жидкости зависят только от и не могу зависеть от .

  • 1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов
  • 2. Гидродинамика и ГиДродинамические процессы
  • 2.1. Физические свойства жидкостей и газов
  • 2.2. Основные уравнения покоя и движения жидкостей
  • 2.2.1. Дифференциальные уравнения равновесия Эйлера для покоящейся жидкости
  • 2.2.2. Практическое приложение уравнений гидростатики
  • 2.2.3. Основные характеристики движения жидкостей
  • 2.2.4. Уравнение неразрывности (сплошности) потока
  • 2.2.5. Режимы движения жидкостей
  • 2.2.6. Турбулентный режим
  • 2.2.7. Дифференциальные уравнения движения жидкости
  • 2.2.8. Дифференциальные уравнения движения Навье-Стокса
  • 2.2.9. Уравнение Бернулли
  • 2.2.10. Гидродинамическое подобие
  • 2.2.11. Гидравлические сопротивления в трубопроводах и каналах
  • 2.2.12. Движение тел в жидкостях
  • 2.2.13. Движение жидкостей через неподвижные пористые слои
  • 2.2.14. Гидродинамика псевдоожиженных слоев
  • 2.3. Перемещение жидкостей (насосы)
  • 2.3.1. Классификация и области применения насосов
  • 2.3.2. Параметры насосов
  • 2.3.3. Насосная установка
  • 2.3.4. Основное уравнение лопастных машин (уравнение Эйлера)
  • 2.3.5. Характеристики центробежных насосов
  • 2.4. Сжатие и перемещение газов (компрессоры)
  • 2.4.1. Классификация компрессоров
  • 2.4.2. Поршневые компрессоры
  • 2.4.3. Теоретический и рабочий процесс в поршневом компрессоре
  • 2.4.4. Производительность действительного поршневого компрессора
  • 2.4.5. Роторные компрессоры
  • 2.4.6. Принцип действия, классификация и устройство турбокомпрессоров
  • 2.5. Процессы разделения неоднородных смесей
  • 2.5.1. Классификация неоднородных систем и способов их разделения
  • 2.5.2. Материальные балансы процессов разделения
  • 2.6. Осаждение
  • 2.7. Фильтрование
  • 2.8. Перемешивание в жидких средах
  • 3. Тепловые процессы и аппараты
  • 3.1. Способы передачи теплоты
  • 3.2. Тепловые балансы
  • 3.3. Температурное поле и температурный градиент
  • 3.4. Передача тепла теплопроводностью
  • 3.5. Тепловое излучение
  • 3.6. Конвективный теплообмен
  • 3.6.1. Теплоотдача
  • 3.6.2. Дифференциальное уравнение конвективного теплообмена
  • 3.6.3. Подобие процессов теплообмена
  • 3.6.4. Теплоотдача при свободном и вынужденном движении жидкости
  • 3.6.5. Теплоотдача при изменении агрегатного состояния
  • 3.7. Сложный теплообмен
  • 3.8. Процессы нагревания, охлаждения и конденсации
  • 3.9. Теплообменные аппараты
  • 3.9.1. Классификация и типы теплообменных аппаратов
  • 3.9.2. Расчет теплообменных аппаратов
  • 3.9.3. Выбор и проектирование поверхностных теплообменников
  • 4. Массообменные процессы и аппараты
  • 4.1. Основы массопередачи
  • 4.1.1. Общие сведения о массообменных процессах
  • 4.1.2. Основные расчетные зависимости массообменных процессов
  • 4.1.3. Материальный баланс массообменных процессов
  • 4.1.4. Движущая сила массообменных процессов
  • 4.1.5. Модифицированные уравнения массопередачи
  • 4.1.6. Основные законы массопередачи
  • 4.1.7. Подобие процессов переноса массы
  • 4.1.8. Связь коэффициентов массопередачи и массоотдачи
  • 4.1.9. Массопередача с твердой фазой
  • 4.2. Абсорбция
  • 4.2.1. Равновесие при абсорбции
  • 4.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
  • 4.2.3. Принципиальные схемы абсорбции
  • 4.2.4. Конструкции колонных абсорбционных аппаратов
  • 4.2.5. Десорбция
  • 4.3. Перегонка жидкостей
  • 4.3.1. Идеальные и неидеальные смеси
  • 4.3.2. Простая перегонка
  • 4.3.3. Ректификация
  • 4.3.4. Ректификация многокомпонентных смесей
  • 4.3.5. Тепловой баланс процесса ректификации
  • 4.3.6. Специальные виды перегонки
  • 4.3.7. Устройство ректификационных аппаратов
  • 4.4. Экстракция
  • 4.4.1. Жидкостная экстракция
  • 4.4.2. Равновесие при экстракции
  • 4.4.3. Материальный баланс экстракции
  • 4.4.4. Кинетические закономерности процесса экстракции
  • 4.4.5. Принципиальные схемы процесса экстракции
  • 4.4.6. Конструкции экстракторов
  • 4.5. Адсорбция
  • 4.5.1. Равновесие в процессах адсорбции
  • 4.5.2. Промышленные адсорбенты
  • 4.5.3. Конструкции адсорбционных аппаратов и методы проведения адсорбционно-десорбционных процессов
  • 4.6. Сушка
  • 4.6.1. Равновесие в процессах сушки
  • 4.6.2. Конструкции сушилок и области их применения
  • 4.6.3. Материальный и тепловой балансы сушки
  • Количество влаги, удаляемой в сушилке:
  • 4.7. Кристаллизация и растворение
  • 4.7.1. Общие сведения
  • 4.7.2. Равновесие при кристаллизации
  • 4.7.3. Кинетика процесса кристаллизации
  • 4.7.4. Факторы, влияющие на процесс кристаллизации
  • 4.7.5. Материальный и тепловой балансы кристаллизации
  • 4.7.6. Кристаллизаторы
  • 5. Мембранные процессы
  • 5.1 . Процессы мембранного разделения смесей. Сущность процесса мембранного разделения смесей
  • 5.2. Кинетика процессов мембранного разделения смесей
  • 5.3. Влияние различных факторов на мембранное разделение
  • 5.4. Мембраны
  • 5.4.1. Уплотняющиеся (полимерные) мембраны
  • 5.4.2. Мембраны с жесткой структурой
  • 5.4.3. Жидкие мембраны
  • 5.5. Физико-химические основы мембранных процессов
  • 5.6. Баромембранные процессы
  • 5.7. Диффузионно-мембранные процессы
  • 5.8. Электромембранные процессы
  • 5.9. Термомембранные процессы
  • 5.10. Расчет мембранных процессов и аппаратов
  • 5.11. Мембранные аппараты
  • Библиографический список
  • Гидравлика и теплотехника
  • 2. Гидродинамика и ГиДродинамические процессы

    2.1. Физические свойства жидкостей и газов

    В гидромеханике принято объединять жидкости, газы и пары под одним названием – жидкости. Это связано с тем, что законы движения жидкостей и газов (паров) одинаковы, если их скорости значительно ниже скорости звука. Жидкостями называются все вещества, обладающие текучестью при приложении к ним самых незначительных сил сдвига.

    При выводе основных закономерностей в гидромеханике также вводится понятие идеальной жидкости, которая, в отличие от реальной (вязкой) жидкости, абсолютно несжимаема под действием давления, не изменяет плотности при изменении температуры и не обладает вязкостью.

    Масса жидкости, содержащаяся в единице объема V , представляет собойплотность тела

    Величина, обратная плотности и представляющая собой объем, занимаемый единицей массы, называется удельным объемом :

    .

    Вес единицы объема жидкости называется удельным весом :

    .

    Удельный вес жидкости и её плотность связаны соотношением

    .

    Плотность, удельный объем и удельный вес относятся к важнейшим характеристикам жидкостей.

    Реальные жидкости делятся на капельные и упругие. Капельные жидкости несжимаемы и обладают малым коэффициентом объемного расширения. Объем упругих жидкостей изменяется при изменении температуры и давления (газы, пары). В большинстве технических задач газы полагают идеальными. Состояние идеального газа описывается уравнением Клапейрона-Менделеева

    ,

    где – универсальная газовая постоянная, равная 8314 Дж/(кмоль·К).

    Это уравнение можно записать для расчета плотности газа

    В ряде задач необходимо учитывать также состояние жидкостей. Для изоэнтропийных процессов в жидкости можно применять уравнение Тета

    ,

    где – давление молекулярного взаимодействия; n коэффициент, зависящий от свойств жидкостей. Для воды  3,210 8 Па, n  7,15.

    В зависимости от температуры и давления вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. В твердых телах молекулы взаимосвязаны между собой, расположены в определенном порядке и совершают только тепловое колебательное движение. Вероятность покинуть занимаемое молекулой (атомом) место мала. Поэтому твердые тела сохраняют заданную форму и объем.

    В жидкостях тепловое движение молекул существенно выше, часть молекул получает достаточную энергию возбуждения и покидает свои места. Поэтому в жидкости молекулы перемещаются по всему объему, но их кинетическая энергия остается недостаточной для выхода за пределы жидкости. В этой связи жидкости сохраняют свой объем.

    В газах тепловое движение еще больше, молекулы удалены настолько, что взаимодействие между ними становится недостаточным для удержания на определенном удалении, т.е. газ имеет возможность беспредельно расширяться.

    Свободное перемешивание молекул в жидкостях и газах приводит к тому, что они изменяют свою форму при приложении сколь угодно малого силового действия. Это явление называют текучестью . Жидкости и газы принимают форму того сосуда, в котором они содержатся.

    В результате хаотического движения молекулы в газе претерпевают столкновения. Процесс столкновения молекул характеризуется эффективным диаметром молекул, под которым понимается минимальное расстояние между центрами молекул при их сближении. Расстояние, которое молекула проходит между столкновениями, называется свободным пробегом молекулы.

    В результате переноса количества движения при переходе молекул, движущихся в слоях с разными скоростями, возникает касательная сила, действующая между этими слоями. Свойство жидкости и газа сопротивляться сдвигающим усилиям называют вязкостью .

    Расположим в жидкой среде пластину 1 на некотором расстоянии от стенки (рис. 2.1).

    Пусть пластина движется относительно стенки 2 со скоростью w. Так как жидкость будет увлекаться пластиной, то в зазоре установится послойное течение жидкости со скоростями, изменяющимися от 0 до w . Выделим в жидкости слой толщиной dy . Очевидно, что скорости нижней и верхней поверхностей слоя будут отличаться по толщине на dw . В результате теплового движения молекулы непрерывно переходят из нижнего слоя в верхний и обратно. Так как их скорости различны, то их количества движения тоже различны. Но, переходя из слоя в слой, они должны принимать количество движения, характерное данному слою, т.е. будет иметь место непрерывное изменение количества движения, от чего появится касательная сила между слоями.

    Обозначим через dT касательную силу, действующую на поверхность слоя площадью dF, тогда

    Опыт показывает, что касательная сила Т , которую надо приложить для сдвига, тем больше, чем больше градиент скорости
    , характеризующий изменение скорости, приходящейся на единицу расстояния по нормали между слоями. Кроме того, сила Т пропорциональна площади соприкосновения F слоев, т.е.

    .

    В такой форме уравнение выражает закон внутреннего трения Ньютона , согласно которому напряжение внутреннего трения, возникающее между слоями жидкости при ее течении, прямо пропорционально градиенту скорости.

    Знак минус в правой части уравнения указывает на то, что касательное напряжение тормозит слой, движущийся с относительно большой скоростью.

    Коэффициент пропорциональности в приведенных уравнениях называетсядинамическим коэффициентом вязкости .

    Размерность динамического коэффициента вязкости в СИ может быть выражена как

    Вязкость жидкостей также можно характеризовать кинематическим коэффициентом вязкости

    .

    Вязкость капельных жидкостей снижается с возрастанием температуры, газов – растет. При умеренном давлении вязкость газов от давления не зависит, однако, начиная с некоторого давления, вязкость возрастает при его увеличении.

    Причины разных зависимостей от температуры для газов и жидкостей в том, что вязкость газов имеет молекулярно-кинетическую природу, а капельных жидкостей зависит от сил сцепления между молекулами.

    В ряде процессов химической технологии капельная жидкость при движении соприкасается с газом (или паром) или с другой капельной жидкостью, практически не смешивающейся с первой.

    Силовое взаимодействие молекул, которые находятся на поверхности жидкости, и молекул, расположенных вдали от нее, неодинаково. Молекула, расположенная на поверхности, находится в симметричном силовом состоянии, верхняя часть силового поля ее вынуждена взаимодействовать с молекулами, находящимися под поверхностью. В результате этого потенциальная энергия связи в поверхностном слое увеличивается, а сам слой находится в более напряженном состоянии. Это явление называют поверхностным натяжением .

    Потенциальная энергия связи в поверхностном слое

    ,

    где коэффициент поверхностного натяжения; dF представляет собой поверхность жидкости, имеющей порядок dl 2 .

    Энергию dE можно представить как некоторую силу, совершающую работу на пути dl , поэтому

    ,

    .

    Таким образом, поверхность жидкости стягивается силой dZ пропорциональной длине, на которой она действует. Эту силу называют силой поверхностного натяжения.

    Поверхностное натяжение проявляется в том, что выделенный объем жидкости стремится принять сферическую форму, особенно это заметно на малых объемах – каплях. Действие силы поверхностного натяжения приводит к увеличению давления внутри капли, направленного внутрь жидкости по нормали к ее поверхности.

    Поверхностное натяжение уменьшается с увеличением температуры. С величиной связаны характеристики смачивания капельными жидкостями твердых материалов. Смачивание оказывает существенное влияние на гидродинамические условия протекания процессов в абсорбционных и ректификационных аппаратах, конденсаторах и т.п.

    Поверхностное натяжение значительно влияет на диспергирование одной жидкости в другой, с ней не смешивающейся, и поэтому существенно сказывается на гидродинамических условиях проведения процессов жидкостной экстракции.

    Гидродинамика

    Гидродинамика – это раздел гидравлики, в котором рассматриваются законы движения и взаимодействия жидкости с неподвижными и подвижными поверхностями.

    Движение жидкости существенно отличается от движения твердого тела. При движении жидкости расстояние между ее частицами не остается постоянным. Перемещение достаточно малого объема жидкости можно представить в виде суммы трех движений: поступательного, вращательного движения всего объема в целом, а также перемещения различных частиц объема относительно друг друга. В движущейся жидкости учитывают как массовые силы, так и силы трения (вязкость).

    Движущаяся жидкость характеризуется двумя параметрами: скоростью течения и гидродинамическим давлением . Основной задачей гидродинамики является определение этих параметров при заданной системе внешних сил.

    Установившимся называется движение, при котором скорость и давление в каждой точке пространства, занятого жидкостью, не изменяются во времени и являются функциями только ее координат:

    При неустановившемся движении давление и скорость изменяются в каждой точке не только с изменением координат, но и во времени:

    Под жидкой частицей в гидродинамике понимают условно выделенный очень малый объем жидкости, изменением формы которого можно пренебречь. Каждая частица жидкости при движении описывает кривую, которая называется траекторией движения .

    Под потоком жидкости понимают движущуюся массу жидкости, полностью или частично ограниченную поверхностями. Поверхности раздела могут быть твердыми или образованными самой жидкостью на границе раздела фаз. Границами потоков служат стенки труб, каналов, открытая поверхность жидкости, а также поверхность обтекаемых потоком тел.

    Напорным называется движение потока в закрытых руслах при полном заполнении поперечного сечения жидкостью. Например, напорное движение в трубах. Оно возникает за счет разности давлений в начале и конце трубопровода.

    Безнапорным называется движение жидкости в открытых руслах, когда поток имеет свободную поверхность. В этом случае движение осуществляется только за счет силы тяжести, т.е. при наличии уклона (движение воды в каналах, реках, лотках и т.п.).

    Струи представляют собой потоки жидкости, вытекающие через отверстия или сопла под действием напора. Струи могут быть ограничены со всех сторон газообразной или жидкой средой. В первом случае они называются свободными, во втором – затопленными.

    Линией тока называют воображаемую кривую в движущемся потоке жидкости, для которой векторы скоростей каждой из частиц жидкости, находящихся на ней в данный момент времени, являются касательными к этой кривой. Линия тока при установившемся движении совпадает с траекторией частиц. Для неустановившегося движения линии тока не совпадают с траекторией. Линия тока характеризует направление движения всех частиц, расположенных на ней в данный момент, а траектория представляет собой путь, пройденной одной частицей за какое-то время .

    Если в потоке движущейся жидкости выделить элементарную площадку , ограниченную контуром , и через все его точки провести линии тока, то образуется трубчатая поверхность, называемая трубкой тока , а жидкость, движущаяся внутри трубки тока, называется элементарной струйкой . Сечение, расположенное нормально к линиям тока называется живым сечением элементарной струйки.

    К – контур тока

    Элементарная струйка при установившемся движении обладает следующими свойствами:

    Ее форма и ориентация в пространстве остаются неизменными по времени;

    Боковая поверхность струйки непроницаема для жидкости, т.е. ни одна частичка жидкости не может проникнуть внутрь или выйти наружу через боковые стенки трубки тока;

    Ввиду малости живого сечения струйки скорость и давление во всех точках сечения следует считать одинаковыми. Однако вдоль струек значения скорости и давления в общем случае могут меняться.

    Живым сечением потока F называется площадь сечения, перпендикулярная к направлению линии тока и ограниченная его внешним контуром. Площадь живого сечения потока равна сумме площадей живых сечений элементарных струек.

    Смоченным периметром потока П называется длина контура живого сечения, по которому жидкость соприкасается с ограничивающими ее стенками.

    При напорном движении жидкости смоченный периметр П совпадает с геометрическим периметром Пг , при безнапорном не совпадает.

    Гидравлическим радиусом R г называется отношение площади живого сечения к смоченному периметру:

    Геометрический радиус и гидравлический радиус – совершенно разные понятия, даже в случае напорного движения жидкости в круглой трубе. Например, для трубы диаметром d геометрический радиус , а гидравлический .

    При гидравлических расчетах часто используется понятие эквивалентного диаметра :

    Расходом называется количество жидкости, протекающей через живое сечение потока в единицу времени. Различают объемный Q, массовый M и весовой G расходы жидкости. Они связаны между собой:

    Для элементарной струйки элементарный расход определяется по формуле:

    где dF - площадь живого сечения элементарной струйки.

    Скорость жидкости в различных точках живого сечения потока различна, и точный закон изменения скорости по сечению не всегда известен, поэтому для упрощения расчетов вводят понятие средней скорости для живого сечения , тогда: .

    Средняя скорость – фиктивная скорость потока, которая считается одинаковой для всех частиц данного сечения и подобрана так, что расход, определенный по ее значению, равен истинному значению расхода.

    Установившееся движение характеризуется постоянством расхода во времени. Различают равномерное и неравномерное установившееся движение.

    Равномерным установившимся движением называется такое движение жидкости, при котором средняя скорость и площади живых сечений потока не изменяются по его длине, например установившееся в цилиндрической трубе, движение в канале призматической формы.

    Неравномерным установившемся движением называется такое движение, при котором средняя скорость и площади живых сечений потока изменяются по его длине, например, движение в трубе переменного сечения, движение в открытых руслах при наличии перегораживающего сооружения.

    Явления, происходящие в реальных гидравлических устройствах, сложны, поэтому процессы описывают с помощью упрощенных моделей жидкости разной степени идеализации. При необходимости полученные результаты уточняют. В гидродинамике используют четыре модели жидкости:



    Þидеальную (невязкую) и несжимаемую, наиболее грубую и простую модель жидкости, когда V=0 и ;

    Þреальную (вязкую) и несжимаемую, которая учитывает потери энергии на трение и используется при исследованиях статических и энергетических характеристик элементов;

    Þидеальную (невязкуго) и сжимаемую, позволяющую с минимальными трудностями рассмотреть динамические процессы в первом приближении;

    Þреальную (вязкую) и сжимаемую, наиболее полно отражающую действительность, используемую при детальном исследовании динамических процессов.

    Поделиться